Effect of annealing temperature on optical and electrical properties of nitrogen implanted p-type ZnMgO thin films

  • Shantanu Saha
  • Sushil Kumar Pandey
  • Saurabh Nagar
  • Subhananda Chakrabarti


p-type nitrogen doped Zn1−xMgxO (x = 0.15) thin films were prepared on n-type silicon substrates by RF sputtering. Plasma-immersion-ion technique and rapid-thermal process were used to implant nitrogen and annealing (700–1000 °C) of these films respectively. Annealed samples at 700, 800, 900 and 1000 °C showed effective improvement of the structural and optical properties. X-ray diffraction spectra showed improvement in <002> orientation of films with increase in annealing temperatures. In Raman spectra, the peak at 436 cm−1 corresponds to E 2 high phonons mode of ZnMgO wurtzite structure and FWHM of this peak decreases with increase in annealing temperature, indicating improvement in crystalline quality. The scanning electron microscopy results demonstrate that nitrogen-implanted ZnMgO film annealed at 1000 °C has better morphology in comparison to other films. Low-temperature (15 K) photoluminescence measurements revealed acceptor-bound exciton peak at 3.45 eV and donor-bound exciton peak around 3.52 eV. Increased intensity of acceptor-bound exciton peak with increasing annealing temperature proves that nitrogen implantation and subsequent annealing increase the acceptor concentration in the film, indicating tendency for p-type conduction at higher annealing temperature. The film annealed at 1000 °C was observed to produce only acceptor-bound exciton emission and no donor-bound exciton emission was occurred. Hall-effect measurements showed p-type conductivity for annealed films in temperature range at 800–1000 °C. The acceptor level at 3.45 eV in PL spectra is responsible for this p-type conduction in these films. The highest hole concentration of 1.91 × 1015 cm−3 has been achieved for film annealed at 1000 °C.


Increase Annealing Temperature Scanning Electron Microscopy Technique Nitrogen Implantation High Hole Concentration ZnMgO Thin Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the Department of Science and Technology (DST), India (SR/S3/EECE/0017/2009) for financial assistance. Partial funding from the Department of Information Technology, Government of India, through the Indian Institute of Technology Bombay Nanofabrication Facility (IITBNF) is also acknowledged. We would also like to acknowledge the Hall Measurement System of Physics department of IIT Bombay for providing us the opportunity to do Hall measurements for our samples. We also thank SAIF, IIT Bombay for carrying out the Raman spectroscopy measurements. We are also grateful to Mr. A.K. Ray and Prof. R. Pinto for their contributions.


  1. 1.
    S.W. Shin, K.U. Sim, S.M. Pawar, A.V. Moholkar, I.O. Jung, J.H. Yun, J.H. Moon, J.H. Kim, J.Y. Lee, Effect of a ZnO buffer layer on the properties of Ga-doped ZnO thin films grown on Al2O3 (0001) substrates at a low growth temperature of 250 °C. J. Cryst. Growth 312, 1551–1556 (2010)CrossRefGoogle Scholar
  2. 2.
    B.K. Sonawane, V. Shelke, M.P. Bhole, D.S. Patil, Structural, optical and electrical properties of cadmium zinc oxide films for light emitting devices. J. Phys. Chem. Solids 72, 1442–1446 (2011)CrossRefGoogle Scholar
  3. 3.
    J. Liu, Y. Xia, L. Wang, Q. Su, W. Shi, Electrical characteristics of UV photodetectors based on ZnO/diamond film structure. Appl. Surf. Sci. 253, 5218–5222 (2007)CrossRefGoogle Scholar
  4. 4.
    D. Sivalingam, J.B. Gopalakrishnan, J.B.B. Rayappan, Nanostructured mixed ZnO and CdO thin film for selective ethanol sensing. Mater. Lett. 77, 117–120 (2012)CrossRefGoogle Scholar
  5. 5.
    C.L. Jia, K.M. Wang, X.L. Wang, X.J. Zhang, F. Lu, Formation of c-axis oriented ZnO optical waveguides by radio-frequency magnetron sputtering. Opt. Express 13, 5093–5099 (2005)CrossRefGoogle Scholar
  6. 6.
    K.K. Banger, Y. Yamashita, K. Mori, R.L. Peterson, T. Leedham, J. Rickard, H. Sirringhaus, Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol–gel on chip’ process. Nature 10, 45–50 (2011)CrossRefGoogle Scholar
  7. 7.
    Z.K. Tang, G.K.L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Appl. Phys. Lett. 72, 3270–3272 (1998)CrossRefGoogle Scholar
  8. 8.
    D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, T. Goto, Optically pumped lasing of ZnO at room temperature. Appl. Phys. Lett. 70, 2230–2232 (1997)CrossRefGoogle Scholar
  9. 9.
    P. Yu, Z.K. Tang, G.K.L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Room-temperature gain spectra and lasing in microcrystalline ZnO thin films. J. Cryst. Growth 601, 184–185 (1998)Google Scholar
  10. 10.
    T. Takagi, H. Tanaka, S. Fujita, Molecular beam epitaxy of high magnesium content single-phase wurzite MgxZn1−xO alloys (x ~ 0.5) and their application to solar-blind region photodetectors. Jpn. J. Appl. Phys. 42, L401–L403 (2003)CrossRefGoogle Scholar
  11. 11.
    S.O. Kucheyev, C. Jagadish, J.S. Williams, P.N.K. Deenapanray, M. Yano, K. Koike, S. Sasa, M. Inoue, K. Ogata, Implant isolation of ZnO. J. Appl. Phys. 93, 2972–2976 (2003)CrossRefGoogle Scholar
  12. 12.
    W. Yang, S.S. Hullavarad, B. Nagaraj, I. Takeuchi, R.P. Sharma, T. Venkatesan, R.D. Vispute, H. Shen, Compositionally-tuned epitaxial cubic MgxZn1−xO on Si(100) for deep ultraviolet photodetectors. Appl. Phys. Lett. 82, 3424–3426 (2003)CrossRefGoogle Scholar
  13. 13.
    S.B. Zhang, S.H. Wei, A. Zunger, Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Phys. Rev. B 63, 075205–075207 (2001)CrossRefGoogle Scholar
  14. 14.
    M. Ohtomo, T. Kawasaki, K. Koida, H. Masubuchi, Y. Koinuma, Y. Sakurai, T. Yoshida, Y. Yasuda, Segawa MgxZn1−xO as a II–VI widegap semiconductor alloy. Appl. Phys. Lett. 72, 2466–2468 (1998)CrossRefGoogle Scholar
  15. 15.
    Y.Z. Zhang, H.P. He, Z.Z. Ye, H.H. Huang, J.G. Lu, M.X. Qiu, B.H. Zhao, L.P. Zhu, J.Y. Huang, Preparation and photoluminescent properties of p-type Li-doped ZnMgO thin films. Mater. Lett. 62, 1418–1420 (2008)CrossRefGoogle Scholar
  16. 16.
    S.K. Mohanta, A. Nakamura, J. Temmyo, Nitrogen and copper doping in MgxZn1−xO films and their impact on p-type conductivity. J. Appl. Phys. 110, 013524 (2011)CrossRefGoogle Scholar
  17. 17.
    D.C. Look, D.C. Reynolds, C.W. Litton, R.L. Jones, D.B. Eason, G. Cantwell, Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy. Appl. Phys. Lett. 81, 1830–1833 (2002)CrossRefGoogle Scholar
  18. 18.
    L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C.X. Shan, B. Yao, D.Z. Shen, p-Type conductivity in NDoped ZnO: the role of the NZn-VO complex. Phys. Rev. Lett. 108, 215501-1–4 (2012)Google Scholar
  19. 19.
    S. Nagar, S. Chakrabarti, Realization of reliable p-type ZnO thin films by nitrogen implantation using plasma immersion ion implantation. Superlattices Microstruct. 75, 9–16 (2014)CrossRefGoogle Scholar
  20. 20.
    Z.G. Ju, C.X. Shan, C.L. Yang, J.Y. Zhang, B. Yao, D.X. Zhao, D.Z. Shen, X.W. Fan, Phase stability of cubic Mg0.55Zn0.45O thin film studied by continuous thermal annealing method. Appl. Phys. Lett. 94, 101902–101903 (2009)CrossRefGoogle Scholar
  21. 21.
    S. Han, J. Zhang, Z. Zhang, Y. Zhao, L. Wang, J. Zheng, B. Yao, D. Zhao, D. Shen, Mg0.58Zn0.42O thin films on MgO substrates with MgO buffer layer. Appl. Mater. Interfaces 2(7), 1918–1921 (2010)CrossRefGoogle Scholar
  22. 22.
    Z.P. Wei, B. Yao, Z.Z. Zhang, Y.M. Lu, D.Z. Shen, B.H. Li, X.H. Wang, J.Y. Zhang, D.X. Zhao, X.W. Fan, Z.K. Tang, Formation of p-type MgZnO by nitrogen doping. Appl. Phys. Lett. 89(10), 2104 (2006)Google Scholar
  23. 23.
    C.X. Wu, Y.M. Lu, D.Z. Shen, Z.P. Wei, Z.Z. Zhang, B.H. Li, J.Y. Zhang, Y.C. Liu, X.W. Fan, Ultraviolet luminescence in Mg0.12Zn0.88O alloy films. Chin. Phys. Lett. 22, 2655 (2005)CrossRefGoogle Scholar
  24. 24.
    D.C. Look, B. Clafin, P-type doping and devices based on ZnO. Phys. Status Solidi B 241, 624–630 (2004)CrossRefGoogle Scholar
  25. 25.
    H. Dae-Kue, K. Hyun-Sik, L. Jae-Hong, O. Jin-Yong, Y. Jin-Ho, P. Seong-Ju, K. Kyoung-Kook, D.C. Look, Y.S. Park, Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering. Appl. Phys. Lett. 86, 151917 (2005)CrossRefGoogle Scholar
  26. 26.
    S. Saha, S. Nagar, S. Chakrabarti, Effects of phosphorus doping by plasma immersion ion implantation on the structural and optical characteristics of Zn0.85Mg0.15O thin films. Appl. Phys. Lett. 105, 061109 (2014)CrossRefGoogle Scholar
  27. 27.
    A.L. Yang, H.P. Song, D.C. Liang, H.Y. Wei, X.L. Liu, P. Jin, X.B. Qin, S.Y. Yang, Q.S. Wang, Z.G. Wang, Photoluminescence spectroscopy and positron annihilation spectroscopy probe of alloying and annealing effects in nonpolar m-plane ZnMgO thin films. Appl. Phys. Lett. 96, 151904:3 (2010)Google Scholar
  28. 28.
    J. Gutowski, N. Presser, I. Broser, Acceptor–exciton complexes in Zno: a comprehensive analysis of their electronic states by high-resolution magnetooptics and excitation spectroscopy. Phys. Rev. B 38, 9746–9758 (1988)CrossRefGoogle Scholar
  29. 29.
    M. Liu, A.H. Kitai, P. Mascher, Point defects and luminescence centres in zinc oxide and zinc oxide doped with manganese. J. Lumin. 54, 35–42 (1992)CrossRefGoogle Scholar
  30. 30.
    S.S. Shinde, P.S. Shinde, Y.W. Oh, D. Haranath, C.H. Bhosale, K.Y. Rajpure, Structural, optoelectronic, luminescence and thermal properties of Ga-doped zinc oxide thin films. Appl. Surf. Sci. 258, 9969–9976 (2012)CrossRefGoogle Scholar
  31. 31.
    J.N. Zeng, J.K. Low, Z.M. Ren, T. Liew, Y.F. Lu, Effect of deposition conditions on optical and electrical properties of ZnO films prepared by pulsed laser deposition 197, 362 (2002)Google Scholar
  32. 32.
    W. Wang, Q. Fang, Y. Liu, H. Zhang, Q. Zhang, Photonics and Optoelectronics (SOPO), Symposium, pp. 1–4 (2012)Google Scholar
  33. 33.
    R. Cusco, E. Alarcon-Llado, J. Ibanez, L. Artus, Temperature dependence of Raman scattering in ZnO. Phys. Rev. B 75, 165202 (2007)CrossRefGoogle Scholar
  34. 34.
    D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell, W.C. Harsch, Electrical properties of bulk ZnO Soli. Stat. Commun. 105, 399–401 (1998)CrossRefGoogle Scholar
  35. 35.
    C.G. Van de Walle, Hydrogen as a cause of doping in zinc oxide. Phys. Rev. Lett. 85, 1012–1015 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Shantanu Saha
    • 1
  • Sushil Kumar Pandey
    • 1
  • Saurabh Nagar
    • 1
  • Subhananda Chakrabarti
    • 1
  1. 1.Department of Electrical EngineeringIndian Institute of Technology BombayPowai, MumbaiIndia

Personalised recommendations