Advertisement

Tuning hole charge collection efficiency in polymer photovoltaics by optimizing the work function of indium tin oxide electrodes with solution-processed LiF nanoparticles

  • Hasan Kurt
  • Junjun Jia
  • Yuzo Shigesato
  • Cleva W. Ow-Yang
Article

Abstract

By varying the density of solution-processed lithium fluoride (sol-LiF) nanoparticles at the interface between tin-doped indium oxide (ITO) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), we have demonstrated that the electronic hole collection efficiency of an organic photovoltaic cell can be optimized through tuning the energy level alignment at the ITO/PEDOT:PSS interface. We synthesized the LiF nanoparticles in solution and deposited them onto ITO electrodes with increasing surface coverage up to 13.2 %. The surface work function of the nanostructured ITO increased linearly from 4.88 to 5.30 eV. When the sol-LiF-modified ITO electrodes were incorporated into polymer solar cells based on a bulk heterojunction of poly(3-hexylthiophene) polymer and methanofullerene, a maximum power conversion efficiency was recorded for a device with an ITO anode modified by 5.3 % of sol-LiF coverage, which corresponded to a measured work function of 5.07 eV. The improvement in short circuit current density by 87 % and power conversion efficiency by 74.3 % suggest that the sol-LiF interlayer density enabled work function tuning of the ITO anode to better match the highest occupied molecular orbital level of PEDOT:PSS, facilitating hole charge collection. The increase in electronic hole collection efficiency is attributed to both a lowered resistance at the ITO modified by sol-LiF and faster hole transport, although these gains are offset by an associated increase in contact polarization. Our findings suggest that the surface work function of ITO can be tuned to improve energy level alignment with other contact layers via the surface density of sol-LiF particles. More efficient hole transport, due to higher recombination resistance, offset by an increased charge extraction barrier presented by contact polarization; the two effects combined give rise to an optimum in sol-LiF nanostructuring of the ITO surface properties.

Keywords

Power Conversion Efficiency Impedance Spectroscopy Contact Polarization Short Circuit Current Density Photogenerated Charge Carrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Financial support is acknowledged from the Scientific and Technological Research Council of Turkey (TUBITAK) for Project No. 112M360, also from H. K. for a BIDEB fellowship. The authors are grateful to Prof. Ayse Turak for fruitful discussions and to GUNAM at Middle East Technical University for use of their solar simulator.

Supplementary material

10854_2015_3613_MOESM1_ESM.docx (5.8 mb)
Supplementary material 1 (docx 5905 kb)

References

  1. 1.
    B. Kippelen, J.-L. Brédas, Energy Environ. Sci. 2, 251 (2009)CrossRefGoogle Scholar
  2. 2.
    F.C. Krebs, T. Tromholt, M. Jørgensen, Nanoscale 2, 873 (2010)CrossRefGoogle Scholar
  3. 3.
    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Prog. Photovolt. Res. Appl. 20, 12 (2012)CrossRefGoogle Scholar
  4. 4.
    R. Søndergaard, M. Hösel, D. Angmo, T.T. Larsen-Olsen, F.C. Krebs, Mater. Today 15, 36 (2012)CrossRefGoogle Scholar
  5. 5.
    H. Ma, H.-L. Yip, F. Huang, A.K.-Y. Jen, Adv. Funct. Mater. 20, 1371 (2010)CrossRefGoogle Scholar
  6. 6.
    G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 4, 864 (2005)CrossRefGoogle Scholar
  7. 7.
    E. Ratcliff, B. Zacher, N. Armstrong, J. Phys. Chem. Lett. 2, 1337 (2011)CrossRefGoogle Scholar
  8. 8.
    J.S. Kim, J.H. Park, J.H. Lee, J. Jo, D.-Y. Kim, K. Cho, Appl. Phys. Lett. 91, 112111 (2007)CrossRefGoogle Scholar
  9. 9.
    M. Gliboff, H. Li, K.M. Knesting, A.J. Giordano, D. Nordlund, G.T. Seidler, J.-L. Brédas, S.R. Marder, D.S. Ginger, J. Phys. Chem. C 117, 15139 (2013)CrossRefGoogle Scholar
  10. 10.
    M. Gliboff, L. Sang, K.M. Knesting, M.C. Schalnat, A. Mudalige, E.L. Ratcliff, H. Li, A.K. Sigdel, A.J. Giordano, J.J. Berry, D. Nordlund, G.T. Seidler, J.-L. Brédas, S.R. Marder, J.E. Pemberton, D.S. Ginger, Langmuir 29, 2166 (2013)CrossRefGoogle Scholar
  11. 11.
    M.G. Helander, Z.B. Wang, J. Qiu, M.T. Greiner, D.P. Puzzo, Z.W. Liu, Z.H. Lu, Science 332, 944 (2011)CrossRefGoogle Scholar
  12. 12.
    C.-Y. Li, T.-C. Wen, T.-F. Guo, J. Mater. Chem. 18, 4478 (2008)CrossRefGoogle Scholar
  13. 13.
    B. Kang, L.W. Tan, S.R.P. Silva, Appl. Phys. Lett. 93, 133302 (2008)CrossRefGoogle Scholar
  14. 14.
    Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A.J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T.M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S.R. Marder, A. Kahn, B. Kippelen, Science 336, 327 (2012)CrossRefGoogle Scholar
  15. 15.
    I.P. Murray, S.J. Lou, L.J. Cote, S. Loser, C.J. Kadleck, T. Xu, J.M. Szarko, B.S. Rolczynski, J.E. Johns, J. Huang, L. Yu, L.X. Chen, T.J. Marks, M.C. Hersam, J. Phys. Chem. Lett. 2, 3006 (2011)CrossRefGoogle Scholar
  16. 16.
    S. Chaudhary, H. Lu, A.M. Müller, C.J. Bardeen, M. Ozkan, Nano Lett. 7, 1973 (2007)CrossRefGoogle Scholar
  17. 17.
    V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, Y. Yang, Appl. Phys. Lett. 88, 073508 (2006)CrossRefGoogle Scholar
  18. 18.
    M.D. Irwin, D.B. Buchholz, A.W. Hains, R.P.H. Chang, T.J. Marks, Proc. Natl. Acad. Sci. 105, 2783 (2008)CrossRefGoogle Scholar
  19. 19.
    K.X. Steirer, P.F. Ndione, N.E. Widjonarko, M.T. Lloyd, J. Meyer, E.L. Ratcliff, A. Kahn, N.R. Armstrong, C.J. Curtis, D.S. Ginley, J.J. Berry, D.C. Olson, Adv. Energy Mater. 1, 813 (2011)CrossRefGoogle Scholar
  20. 20.
    W.-J. Yoon, P.R. Berger, Appl. Phys. Lett. 92, 013306 (2008)CrossRefGoogle Scholar
  21. 21.
    H.-L. Yip, S.K. Hau, N.S. Baek, A.K.-Y. Jen, Appl. Phys. Lett. 92, 193313 (2008)CrossRefGoogle Scholar
  22. 22.
    A. Turak, RSC Adv. 3, 6188 (2013)CrossRefGoogle Scholar
  23. 23.
    L.S.C. Pingree, B.A. MacLeod, D.S. Ginger, J. Phys. Chem. C 112, 7922 (2008)CrossRefGoogle Scholar
  24. 24.
    H. Yan, P. Lee, N.R. Armstrong, A. Graham, G.A. Evmenenko, P. Dutta, T.J. Marks, J. Am. Chem. Soc. 127, 3172 (2005)CrossRefGoogle Scholar
  25. 25.
    K.W. Wong, H.L. Yip, Y. Luo, K.Y. Wong, W.M. Lau, K.H. Low, H.F. Chow, Z.Q. Gao, W.L. Yeung, C.C. Chang, Appl. Phys. Lett. 80, 2788 (2002)CrossRefGoogle Scholar
  26. 26.
    G. Garcia-Belmonte, A. Guerrero, J. Bisquert, J. Phys. Chem. Lett. 4, 877 (2013)CrossRefGoogle Scholar
  27. 27.
    G. Garcia-Belmonte, A. Munar, E.M. Barea, J. Bisquert, I. Ugarte, R. Pacios, Org. Electron. 9, 847 (2008)CrossRefGoogle Scholar
  28. 28.
    T. Aytun, A. Turak, I. Baikie, G. Halek, C.W. Ow-Yang, Nano Lett. 12, 39 (2012)CrossRefGoogle Scholar
  29. 29.
    A. Turak, T. Aytun, C.W. Ow-Yang, Appl. Phys. Lett. 100, 253303 (2012)CrossRefGoogle Scholar
  30. 30.
    C.W. Ow-Yang, J. Jia, T. Aytun, M. Zamboni, A. Turak, K. Saritas, Y. Shigesato, Thin Solid Films 559, 58 (2014)CrossRefGoogle Scholar
  31. 31.
    C.A. Schneider, W.S. Rasband, K.W. Eliceiri, Nat. Methods 9, 671 (2012)CrossRefGoogle Scholar
  32. 32.
    A.S. Bondarenko, G.A. Ragoisha, in Progress in Chemometrics Research, ed. by A.L. Pomerantsev (Nova Science Publishers, New York, 2005), p. 89Google Scholar
  33. 33.
    S. Suckow, T.M. Pletzer, H. Kurz, Prog. Photovolt. Res. Appl. 22, 494 (2014)CrossRefGoogle Scholar
  34. 34.
    E.L. Ratcliff, J. Meyer, K.X. Steirer, N.R. Armstrong, D. Olson, A. Kahn, Org. Electron. 13, 744 (2012)CrossRefGoogle Scholar
  35. 35.
    O. Bubnova, Z.U. Khan, H. Wang, S. Braun, D.R. Evans, M. Fabretto, P. Hojati-Talemi, D. Dagnelund, J.-B. Arlin, Y.H. Geerts, S. Desbief, D.W. Breiby, J.W. Andreasen, R. Lazzaroni, W.M. Chen, I. Zozoulenko, M. Fahlman, P.J. Murphy, M. Berggren, X. Crispin, Nat. Mater. 13, 190 (2014)CrossRefGoogle Scholar
  36. 36.
    T. Aernouts, W. Geens, J. Poortmans, P. Heremans, S. Borghs, R. Mertens, Thin Solid Films 403–404, 297 (2002)CrossRefGoogle Scholar
  37. 37.
    C. Waldauf, M.C. Scharber, P. Schilinsky, J.A. Hauch, C.J. Brabec, J. Appl. Phys. 99, 104503 (2006)CrossRefGoogle Scholar
  38. 38.
    T. Strobel, C. Deibel, V. Dyakonov, Phys. Rev. Lett. 105, 266602 (2010)CrossRefGoogle Scholar
  39. 39.
    A. Wagenpfahl, C. Deibel, V. Dyakonov, IEEE J. Sel. Top. Quantum Electron. 16, 1759 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Hasan Kurt
    • 1
  • Junjun Jia
    • 2
  • Yuzo Shigesato
    • 2
  • Cleva W. Ow-Yang
    • 1
    • 3
  1. 1.Faculty of Engineering and Natural SciencesSabanci UniversityIstanbulTurkey
  2. 2.Graduate School of Science and EngineeringAoyama Gakuin UniversitySagamiharaJapan
  3. 3.Nanotechnology Research and Application CenterSabanci UniversityIstanbulTurkey

Personalised recommendations