Advertisement

Phase transition and energy storage performance in Ba-doped PLZST antiferroelectric ceramics

  • Xiucai Wang
  • Jie Shen
  • Tongqing YangEmail author
  • Zhao Xiao
  • Ying Dong
Article

Abstract

(Pb0.97−xBaxLa0.02)(Zr0.7Sn0.27Ti0.03) (0 < x < 0.08) antiferroelectric (AFE) ceramics were successfully fabricated by a solid state reaction, and the effect of barium (Ba) additions and temperature on the dielectric properties and energy storage performance were investigated. The ceramics with lower Ba content undergo two phase transitions during heating from room temperature to 300 °C: orthorhombic (O)-rhombohedral (R)-cubic (C). With the increase of Ba content, dielectric constants increased and transition temperature decreased obviously. The ferroelectric phase was induced as the composition x increased from 0 to 0.08, however, which was not stable and transformed into AFE state upon heating, and then paraelectric phase, which was confirmed by DC field dependence of dielectric constant. The polarization sharply increased from 9.7 μC/cm2 at 20 °C to 24. 6μC/cm2 at 100 °C in (Pb0.89Ba0.08La0.02)(Zr0.7Sn0.27Ti0.03) ceramic. As a result, the maximum recovered energy density of 2.1 J/cm3 was obtained at 80 °C, and the corresponding energy-storage efficiency was 76.5 %, which made this material a promising potential application in capacitors for pulsed power systems.

Keywords

Threshold Electric Field PLZT Thin Film Field Induce Phase Transition Pulse Power System Conventional Solid State Reaction Route 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51272178) and the Innovation Program of Shanghai Municipal Education Commission (No. 14ZZ041).

References

  1. 1.
    R. Lu, J. Yuan, Q.L. Zhao, B. Li, Y. Li, M.S. Cao, J. Mater. Sci. Mater. Electron. 24, 2521 (2013)CrossRefGoogle Scholar
  2. 2.
    K. Ramam, A.J. Bell, C.R. Bowen, K. Chandramouli, J. Alloys Compd. 473, 330 (2009)CrossRefGoogle Scholar
  3. 3.
    K. Markowski, S.E. Park, S. Yoshikawa, L.E. Cross, J. Am. Ceram. Soc. 79, 3297 (1996)CrossRefGoogle Scholar
  4. 4.
    R. Rai, S. Mishra, N.K. Singh, J. Alloys Compd. 487, 494 (2009)CrossRefGoogle Scholar
  5. 5.
    S.E. Park, K. Markowski, S. Yoshikawa, L.E. Cross, J. Am. Ceram. Soc. 80, 407 (1997)CrossRefGoogle Scholar
  6. 6.
    H. He, X.L. Tan, Phys. Rev. B 72, 024102 (2005)CrossRefGoogle Scholar
  7. 7.
    F. Xue, L.Y. Liang, Y.J. Gu, I. Takeuchi, S.V. Kalinin, L.Q. Chen, Appl. Phys. Lett. 106, 012903 (2015)CrossRefGoogle Scholar
  8. 8.
    X.F. Chen, H.L. Zhang, F. Cao, G.S. Wang, X.L. Dong, Y. Gu, H.L. He, Y.S. Liu, J. Appl. Phys. 106, 034105 (2009)CrossRefGoogle Scholar
  9. 9.
    X.F. Chen, F. Cao, H.L. Zhang, G. Yu, G.S. Wang, X.L. Dong, Y. Gu, H.L. He, Y.S. Liu, J. Am. Ceram. Soc. 95, 1163 (2012)CrossRefGoogle Scholar
  10. 10.
    A. Mesquita, A. Michalowicz, P.S. Pizani, K. Provost, V.R. Mastelaro, J. Alloys Compd. 582, 680 (2014)CrossRefGoogle Scholar
  11. 11.
    N. Zhang, Y.J. Feng, Z. Xu, Mater. Res. Innov. 15, 240 (2011)CrossRefGoogle Scholar
  12. 12.
    Z. Hu, B. Ma, R.E. Koritala, U. Balachandran, Appl. Phys. Lett. 104, 263902 (2014)CrossRefGoogle Scholar
  13. 13.
    Q.F. Zhang, M.W. Fan, S. Jiang, T.Q. Yang, J.F. Wang, X. Yao, J. Alloys Compd. 551, 279 (2013)CrossRefGoogle Scholar
  14. 14.
    J.F. Wang, T.Q. Yang, S.C. Chen, G. Li, Mater. Res. Bull. 48, 3847 (2013)CrossRefGoogle Scholar
  15. 15.
    Q. Zhang, X.L. Liu, Y. Zhang, X.Z. Song, J. Zhu, I. Baturin, J.F. Chen, Ceram. Int. 41, 3030 (2015)CrossRefGoogle Scholar
  16. 16.
    Y.Y. Li, Q. Li, Q.F. Yan, Y.L. Zhang, X.Q. Xi, X.C. Chu, W.W. Cao, Appl. Phys. Lett. 101, 132904 (2012)CrossRefGoogle Scholar
  17. 17.
    W. Chan, Z. Xu, J.W. Zhai, E. Colla, H. Chen, J. Electron. Ceram. 21, 145 (2008)Google Scholar
  18. 18.
    C. Cho, D.A. Payne, S. Cho, Appl. Phys. Lett. 71, 3013 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Xiucai Wang
    • 1
    • 2
  • Jie Shen
    • 1
  • Tongqing Yang
    • 1
    • 2
    Email author
  • Zhao Xiao
    • 1
  • Ying Dong
    • 1
  1. 1.Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), Functional Materials Research Laboratory, College of Materials Science and EngineeringTongji UniversityShanghaiChina
  2. 2.Functional Materials Research Laboratory, College of Materials Science and EngineeringTongji UniversityShanghaiChina

Personalised recommendations