Luminescence studies of dysprosium doped strontium aluminate white light emitting phosphor by combustion route

  • Ishwar Prasad SahuEmail author
  • D. P. Bisen
  • Nameeta Brahme
  • Raunak Kumar Tamrakar
  • Ravi Shrivastava


In the present investigation dysprosium doped strontium aluminate phosphor was prepared by combustion synthesis method. The crystal structure of the prepared phosphor was consistent with standard monoclinic phase with a space group P21. According to the TEM analysis, the particle size was found to be in the nanometer range. The trap parameters which are mainly activation energy (E), frequency factor (s) and order of the kinetics (b) were evaluated by using the peak shape method. Under the ultraviolet (365 nm) excitation, photoluminescence (PL) spectra showed characteristic emission bands at 480 (blue), 573 (yellow) and 670 nm (red) due to 4F9/2 → 6H15/2, 4F9/2 → 6H13/2 and 4F9/2 → 6H11/2 transitions of Dy3+ ions. Combination of these three emissions constituted as white light confirmed by the Commission Internationale de L’Eclairage (CIE) chromatic coordinate diagram and possible mechanism of white light emitting SrAl2O4:Dy3+ phosphor was also investigated. The value of correlated color temperature (CCT) was found, well within the defined acceptable range (5965 K). The mechanoluminescence (ML) intensity of SrAl2O4:Dy3+ phosphor increases linearly with increasing impact velocity of the moving piston. Thus, the present investigation indicates the piezo-electricity was responsible to produce ML in prepared phosphor.


Impact Velocity Dysprosium Glow Curve SrAl2O4 Thermally Stimulate Luminescence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C. Zhao, D. Chen, Y. Yuan, M. Wu, Synthesis of Sr4Al14O25:Eu2+, Dy3+ phosphor nanometer powders by combustion processes and its optical properties. Mater. Sci. Eng. B 133, 200–204 (2006)CrossRefGoogle Scholar
  2. 2.
    K.E. Foka, F.B. Dejene, H.C. Swart, Photoluminescence properties of Ce3+ doped SrAl2O4 prepared using the solution combustion method. Phys. B 439, 177–180 (2014)CrossRefGoogle Scholar
  3. 3.
    B.M. Mothudi, O.M. Ntwaeaborwa, J.R. Botha, H.C. Swart, Photoluminescence and phosphorescence properties of MAl2O4:Eu2+, Dy3+ (M = Ca, Ba, Sr) phosphors prepared at an initiating combustion temperature of 500 °C. Phys. B 404, 4440–4444 (2009)CrossRefGoogle Scholar
  4. 4.
    F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.H. Whangbo, A. Garcia, T. Le Mercier, On the phosphorescence mechanism in SrAl2O4:Eu2+ and its codoped derivatives. Solid State Sci. 9, 608–612 (2007)CrossRefGoogle Scholar
  5. 5.
    E. Nakazawa, Y. Murazaki, S. Saito, Mechanism of the persistent phosphorescence in Sr4Al14O25:Eu and Sr4Al14O25:Eu codoped with rare earth ions. J. Appl. Phys. 100, 113–118 (2006)Google Scholar
  6. 6.
    R. Chen, Y. Wang, Y. Hu, Z. Hu, C. Liu, Modification on luminescent properties of SrAl2O4:Eu2+, Dy3+ phosphor by Yb3+ ions doping. J. Lumin. 128, 1180–1184 (2008)CrossRefGoogle Scholar
  7. 7.
    Z. Tang, F. Zhang, Z. Zhang, C. Huang, Y. Lin, Luminescent properties of SrAl2O4:Eu, Dy material prepared by the gel method. J. Eur. Ceram. Soc. 20, 2129–2132 (2000)CrossRefGoogle Scholar
  8. 8.
    O. Arellano-Tánori, R. Meléndrez, M. Pedroza-Montero, B. Castañeda, V. Chernov, W.M. Yen, M. Barboza-Flores, Persistent luminescence dosimetric properties of UV-irradiated SrAl2O4:Eu2+, Dy3+ phosphor. J. Lumin. 128, 173–184 (2008)CrossRefGoogle Scholar
  9. 9.
    H.B. Yuan, W. Jia, S.A. Basun, L. Lu, R.S. Meltzer, W.M. Yen, The long-persistent photoconductivity of SrAl2O4:Eu2+, Dy3+single crystals. J. Electrochem. Soc. 147, 3154–3156 (2000)CrossRefGoogle Scholar
  10. 10.
    T. Peng, H. Yang, X. Pu, B. Hu, Z. Jiang, C. Yan, Combustion synthesis and photoluminescence of SrAl2O4:Eu, Dy phosphor nanoparticles. Mater. Lett. 58, 352–356 (2004)CrossRefGoogle Scholar
  11. 11.
    Z. Fu, L. Ma, S. Sahi, R. Hall, W. Chen, Influence of doping concentration on valence states of europium in SrAl2O4: Eu phosphors. J. Lumin. 143, 657–662 (2013)CrossRefGoogle Scholar
  12. 12.
    D.S. Kshatri, A. Khare, P. Jha, Effects of Dy concentration on luminescent properties of SrAl2O4: Eu phosphors. Optik 124, 2974–2978 (2013)CrossRefGoogle Scholar
  13. 13.
    S.K. Sharma, S.S. Pitale, M.M. Malik, T.K. GunduRao, S. Chawla, M.S. Qureshi, R.N. Dubey, Spectral and defect analysis of Cu-doped combustion synthesized new SrAl4O7 phosphor. J. Lumin. 130, 240–245 (2010)CrossRefGoogle Scholar
  14. 14.
    B.M. Smets, Phosphors based on rare-earths, a new era in fluorescent lighting. Mater. Chem. Phys. 16(3–4), 283–288 (1987)CrossRefGoogle Scholar
  15. 15.
    C.R. Ronda, Recent achievements in research on phosphors for lamps and displays. J. Lumin. 49, 72–79 (1997)Google Scholar
  16. 16.
    G. Ju, Y. Hu, L. Chen, X. Wang, Z. Mu, Concentration quenching of persistent luminescence. Phys. B 415, 1–4 (2013)CrossRefGoogle Scholar
  17. 17.
    Y. Cheng, Y. Zhao, Y. Zhang, X. Cao, Preparation of SrAl2O4:Eu2+, Dy3+ fibers by electrospinning combined with sol–gel process. J. Colloid Interface Sci. 344, 321–326 (2010)CrossRefGoogle Scholar
  18. 18.
    N. Dubnikova, E. Garskaite, A. Beganskiene, A. Kareiva, Sol–gel synthesis and characterization of sub-microsized lanthanide (Ho, Tm, Yb, Lu) aluminium garnets. Opt. Mater. 33, 1179–1184 (2011)CrossRefGoogle Scholar
  19. 19.
    B. Schrader, Infrared and Raman spectroscopy: methods and applications (VCH, Weinheim, 1995)CrossRefGoogle Scholar
  20. 20.
    K. Nakamoto, Infrared and Raman spectra of inorganic and coordination compounds (Wiley, New York, 1986)Google Scholar
  21. 21.
    Y. Karabulut, A. Canimoglu, Z. Kotan, O. Akyuz, E. Ekdal, Luminescence of dysprosium doped strontium aluminate phosphors by codoping with manganese ion. J. Alloy. Compd. 583, 91–95 (2014)CrossRefGoogle Scholar
  22. 22.
    M. Ayvacıklı, A. Ege, N. Can, Radioluminescence of SrAl2O4:Ln3+ (Ln = Eu, Sm, Dy) phosphor ceramic. Opt. Mater. 34, 138–142 (2011)CrossRefGoogle Scholar
  23. 23.
    P.T. Ji, X.Y. Chen, Y.Q. Wu, Encapsulating MAl2O4:Eu2+, Dy3+ ((M = Sr, Ca, Ba) phosphors with triethanolamine to enhance water resistance. Appl. Surf. Sci. 258, 1888–1893 (2011)CrossRefGoogle Scholar
  24. 24.
    M. Misevicius, O. Scit, I. Grigoraviciute-Puroniene, G. Degutis, I. Bogdanoviciene, A. Kareiva, Sol–gel synthesis and investigation of un-doped and Ce-doped strontium aluminates. Ceram. Int. 38, 5915–5924 (2012)CrossRefGoogle Scholar
  25. 25.
    A. Nag, T.R.N. Kutty, The mechanism of long phosphorescence of SrAl2−xBxO4 (0 < x<0.2) and Sr4Al14−xBxO25 (0.1 < x<0.4) co-doped with Eu2+ and Dy3+. Mater. Res. Bull. 39, 331–342 (2004)CrossRefGoogle Scholar
  26. 26.
    T. Katsumata, R. Sakai, S. Komuro, T. Morikawa, Thermally stimulated and photostimulated luminescence from long duration phosphorescent SrAl2O4:Eu, Dy crystals. J. Electrochem. Soc. 150(5), 111–114 (2003)CrossRefGoogle Scholar
  27. 27.
    M. Mashangva, M.N. Singh, T.B. Singh, Estimation of optical trapping relevant to persistence luminescence Indian. J. Pure Appl. Phys. 49, 583–589 (2011)Google Scholar
  28. 28.
    I.P. Sahu, D.P. Bisen, N. Brahme, Dysprosium doped di-strontium magnesium di-silicate white light emitting phosphor by solid state reaction method. Displays 35, 279–286 (2014)CrossRefGoogle Scholar
  29. 29.
    I.P. Sahu, D.P. Bisen, N. Brahme, Structural characterization and optical properties of dysprosium doped strontium calcium magnesium di-silicate phosphor by solid state reaction method. Displays 38, 68–76 (2015)CrossRefGoogle Scholar
  30. 30.
    F.M. Emen, N. Kulcu, A.N. Yazici, Synthesis, characterization and luminescence properties of the long afterglow Phosphor Ba4Al14O25:Eu, Dy. Eur J Chem 1(1), 28–32 (2010)CrossRefGoogle Scholar
  31. 31.
    Z. Yuan, C. Chang, D. Mao, W. Ying, Effect of composition on the luminescent properties of Sr4Al14O25:Eu2+, Dy3+ phosphors. J. Alloys Compd. 377(1–2), 268–271 (2004)CrossRefGoogle Scholar
  32. 32.
    F.M. Emen, V.E. Kafadar, N. Kulcu, A.N. Yazici, Thermoluminescence studies and detailed kinetic analysis of Sr4Al14O25:Eu2+, Dy3+ phosphor. J Lumin 144, 133–138 (2013)CrossRefGoogle Scholar
  33. 33.
    V. Pagonis, G. Kitis, C. Furetta, Numerical and practical exercises in thermoluminescence (Springer, Berlin, 2006)Google Scholar
  34. 34.
    R. Chen, S.W.S. Mckeever, Theory of thermoluminescence and related phenomena (World Scientific Publications, London, NJ, Singapore, 1997), p. 576CrossRefGoogle Scholar
  35. 35.
    J. Kuang, Y. Liu, J. Zhang, White-light-emitting long-lasting phosphorescence in Dy3+ doped SrSiO3. J. Solid State Chem. 179, 266–269 (2006)CrossRefGoogle Scholar
  36. 36.
    Rama Raju GS, Park JY, Jung HC, Moon BK, Jeong JH, Kim JH, Blue and green emissions with high color purity from nanocrystalline Ca2Gd8Si6O26: Ln (Ln = Tm or Er) phosphors. Curr. Appl. Phys. 9, 92–97 (2009)CrossRefGoogle Scholar
  37. 37.
    Y. Chen, X. Cheng, M. Liu, Z. Qi, C. Shi, Comparison study of the luminescent properties of the white-light long afterglow phosphors: CaxMgSi2O5+x :Dy3+. J. Lumin. 129, 531–535 (2009)CrossRefGoogle Scholar
  38. 38.
    A. Zukauskas, M.S. Shur, R. Gaska, Introduction to solid state lighting (Wiley, New York, 2002)Google Scholar
  39. 39.
    I.P. Sahu, Luminescence properties of dysprosium doped calcium magnesium silicate phosphor by solid state reaction method. J. Alloys Compds. (2015). doi: 10.1016/j.jallcom.2015.06.011 Google Scholar
  40. 40.
    CIE (1931) International Commission on Illumination. Publication CIE No. 15 (E-1.3.1)Google Scholar
  41. 41.
    C.S. McCamy, Correlated color temperature as an explicit function of chromaticity coordinates. Color Res. Appl. 17, 142–144 (1992)CrossRefGoogle Scholar
  42. 42.
    R. Shrivastava, J. Kaur, Studies on long lasting optical properties of Eu2+ and Dy3+ doped di-barium magnesium silicate phosphors. Chin. Chem. Lett. (2015). doi: 10.1016/j.cclet.2015.05.028 Google Scholar
  43. 43.
    T. Aitasalo, J. Holsa, H. Jungner, M. Lastusaari, J. Niittykoski, Thermoluminescence study of persistent luminescence materials: Eu2+ and R3+ doped calcium aluminates, CaAl2O4:Eu2+, R3+. J. Phys. Chem. B 110, 4589–4598 (2006)CrossRefGoogle Scholar
  44. 44.
    I.P. Sahu, The role of europium and dysprosium in the bluish-green long lasting Sr2Al2SiO7:Eu2+, Dy3+ phosphor by solid state reaction method. J. Mater. Sci. Mater. Electron. (2015). doi: 10.2007/s10854-015-3327-2 Google Scholar
  45. 45.
    D.R. Vij, Luminescence of solids (Plenum Press, New York, 1998)CrossRefGoogle Scholar
  46. 46.
    B.P. Chandra, Development of mechanoluminescence technique for impact studies. J. Lumin. 131, 1203–1210 (2011)CrossRefGoogle Scholar
  47. 47.
    I.P. Sahu, D.P. Bisen, N. Brahme, L. Wanjari, R.K. Tamrakar, Structural Characterization and luminescence properties of bluish-green emitting SrCaMgSi2O7:Eu2+, Dy3+ phosphor by solid state reaction method. Res. Chem. Intermed. (2015). doi: 10.1007/s11164-015-1929-1 Google Scholar
  48. 48.
    I.P. Sahu, D.P. Bisen, N. Brahme, Luminescence properties of Eu2+ and Dy3+ doped Sr2MgSi2O7 and Ca2MgSi2O7 phosphors by solid state reaction method. Res. Chem. Intermed. (2014). doi: 10.1007/s11164-014-1767-6 Google Scholar
  49. 49.
    B.P. Chandra, A.S. Rathore, Classification of mechanoluminescence. Cryst. Res. Technol. 30, 885–896 (1995)CrossRefGoogle Scholar
  50. 50.
    I.P. Sahu, D.P. Bisen, N. Brahme, Luminescence properties of green emitting Ca2MgSi2O7:Eu2+ phosphor by solid state reaction method. Lumin J Biol Chem Lumin (2015). doi: 10.1002/bio.2869 Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ishwar Prasad Sahu
    • 1
    Email author
  • D. P. Bisen
    • 1
  • Nameeta Brahme
    • 1
  • Raunak Kumar Tamrakar
    • 2
  • Ravi Shrivastava
    • 3
  1. 1.School of Studies in Physics and AstrophysicsPt. Ravishankar Shukla UniversityRaipurIndia
  2. 2.Department of Applied PhysicsBhilai Institute of TechnologyDurgIndia
  3. 3.Department of PhysicsICFAI UniversityRaipurIndia

Personalised recommendations