Advertisement

Studies on chemical bath deposited CuO thin films for solar cells application

  • V. Ramya
  • K. Neyvasagam
  • R. Chandramohan
  • S. Valanarasu
  • A. Milton Franklin Benial
Article

Abstract

CuO thin films were deposited onto glass substrates using Chemical bath deposition technique by varying the pH of the solution. Structural, optical and electrical properties of the synthesized films were studied as a function of the solution pH. X-ray diffractometry, scanning electron microscopy, UV–Vis spectroscopy and Hall effect measurements were used to explore the structure, morphology, optical and electrical properties of the films, respectively. All the films have exhibited orthorhombic structure with preferential orientation along the (111) plane. X-ray line profile analysis has been carried out to determine the microstructural parameters such as crystallite size, RMS microstrain, dislocation density and stacking fault probability. Morphological studies have revealed that the uniformity of the film surface, and the average particle size was found to increase with solution pH. Optical parameters such as band gap, refractive index, extinction coefficient, real and imaginary dielectric constants and optical conductivity have been estimated from optical absorption measurements. Carrier concentration and mobility of charge carriers estimated from the Hall measurement were found to be 7.43 × 1013 cm−3 and 11.84 cm2 V−1 s−1 respectively for CuO films prepared at solution pH 11.0.

Keywords

Crystallite Size Optical Conductivity Chemical Bath Deposition Cupric Oxide Optical Absorption Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.A. Andrade-Arvizu, M.C. Piedrahita, O. Vigil-Galan, J. Mater. Sci. Mater. Electron. 26, 4541 (2015)CrossRefGoogle Scholar
  2. 2.
    S. Ghosh, D.K. Avasthi, P. Shah, V. Ganesan, A. Gupta, D. Sarangi, R. Bhattacharya, W. Assmann, Vacuum 57, 377–385 (2000)CrossRefGoogle Scholar
  3. 3.
    A. Chen, H. Long, X. Li, Y. Li, G. Yang, P. Lu, Vacuum 83, 927–930 (2009)CrossRefGoogle Scholar
  4. 4.
    M. Vila, C. Diaz-Guerra, J. Piqueras, J. Phys. D Appl. Phys. 43, 135403–135407 (2010)CrossRefGoogle Scholar
  5. 5.
    I. Singh, R.K. Bedi, Appl. Surf. Sci. 257, 7592–7599 (2011)CrossRefGoogle Scholar
  6. 6.
    D.P. Dubal, D.S. Dhawale, R.R. Salunkhe, V.S. Jamdade, C.D. Lokhande, J. Alloys Comp. 2010(492), 26–30 (2010)CrossRefGoogle Scholar
  7. 7.
    D.P. Volanti, M. Orlandi, J. Andres, E. Longo, Cryst. Eng. Comm. 12, 1696–1699 (2010)CrossRefGoogle Scholar
  8. 8.
    D.M. Jundale, P.B. Joshi, S. Sen, V.B. Patil, J. Mater. Sci. Mater. Electron. 23, 1492 (2012)CrossRefGoogle Scholar
  9. 9.
    J. Xu, K. Yu, J. Wu, D. Shang, L. Li, Y. Xu, Z. Zhu, J. Phys. D Appl. Phys. 42, 075417-10 (2009)Google Scholar
  10. 10.
    Y. Zhang, S. Wing, X. Wang, T. Cui, W. Cui, Y. Zhang, Z. Zhang, Eur. J. Inorg. Chem. 2009, 168–171 (2009)CrossRefGoogle Scholar
  11. 11.
    J.K. Feng, H. Xia, M.O. Lai, L. Lu, Mater. Res. Bullet. 46, 424–427 (2011)CrossRefGoogle Scholar
  12. 12.
    J. Hong, J. Li, Y. Ni, J. All. Comp. 481, 610–615 (2009)CrossRefGoogle Scholar
  13. 13.
    M. Abdel Rafea, M. Roushdy, J. Phys. D Appl. Phys. 42, 015413–015414 (2009)CrossRefGoogle Scholar
  14. 14.
    M.T.S. Nair, L. Guerrero, L. Olga Arenas, P.K. Nair, Appl. Surf. Sci. 150, 143–145 (1999)CrossRefGoogle Scholar
  15. 15.
    N. Serin, T. Serin, S. Horzum, Y. Celik, Semicond. Sci. Tech. 20, 398–402 (2005)CrossRefGoogle Scholar
  16. 16.
    G.B. Mitra, Acta Crystallogr. 17, 765–766 (1964)CrossRefGoogle Scholar
  17. 17.
    G.B. Mitra, N.K. Misra, J. Appl. Phys. 17, 1319–1323 (1965)Google Scholar
  18. 18.
    S. Thanikaikarasan, X. Sahaya Shajan, V. Dhanasekaran, T. Mahalingam, J. Mater. Sci. 46, 4034–4045 (2011)CrossRefGoogle Scholar
  19. 19.
    Y.G. Gudage, N.G. Deshpande, R.J. Sharma, Phys. Chem. Solids 70, 907–915 (2007)CrossRefGoogle Scholar
  20. 20.
    S. Thanikaikarasan, T. Mahalingam, J. Alloys Comp. 511, 115 (2012)CrossRefGoogle Scholar
  21. 21.
    C. Zhu, M.J. Panzer, Chem. Mater. 26, 2960–2966 (2014)CrossRefGoogle Scholar
  22. 22.
    I. Yasuhoro, K. Hirkazu, Appl. Surf. Sci. 169, 508–511 (2001)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • V. Ramya
    • 1
  • K. Neyvasagam
    • 2
  • R. Chandramohan
    • 3
  • S. Valanarasu
    • 4
  • A. Milton Franklin Benial
    • 5
  1. 1.Department of PhysicsVickram College of EngineeringEnathiIndia
  2. 2.PG and Research Department of PhysicsThe Madura CollegeMaduraiIndia
  3. 3.Department of PhysicsSree Sevugan Annamalai CollegeDevakottaiIndia
  4. 4.PG and Research Department of PhysicsArul Anandar CollegeKarumathurIndia
  5. 5.Department of PhysicsN.M.S.S.V.N. CollegeMaduraiIndia

Personalised recommendations