Controlled preparation of TiO2 hollow microspheres constructed by crosslinked nanochains with high photocatalytic activity

  • Haojie Song
  • Shengsheng You
  • Tao Chen
  • Xiaohua Jia
Article

Abstract

TiO2 hollow microspheres were successfully synthesized via a controlled hydrolysis reaction, which involved the deposition of an inorganic coating of TiO2 on the surface of carbon spheres and subsequent removal of carbon spheres by calcination in air. The as-prepared TiO2 hollow microspheres with an average diameter of 200 nm presented a novel morphology, which was constructed by closely crosslinked TiO2 nanochains. The morphology of the hollow sphere can be controlled by varying the concentration of TiCl3 solution. A possible formation mechanism was also proposed. The photo-degradation of rhodamine B (RhB) aqueous solution showed that TiO2 hollow microspheres exhibited higher photocatalytic activity than that of TiO2 nanoparticles. The enhanced photocatalytic activity of the as-prepared TiO2 microspheres here could result from their hollow structures assembled by TiO2 nanochains and large light-harvesting efficiency.

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 51372103, and 51202092), the special grade of the financial support from China Postdoctoral Science Foundation (2014T70485), the China Postdoctoral Science Foundation (2013M531285).

References

  1. 1.
    J.S. Chen, D. Luan, C.M. Li, F.Y.C. Boey, S. Qiao, X.W. Lou, TiO2 and SnO2@TiO2 hollow spheres assembled from anatase TiO2 nanosheets with enhanced lithium storage properties. Chem. Commun. 46, 8252–8254 (2010)CrossRefGoogle Scholar
  2. 2.
    U. Bach, D. Lupo, P. Comte, J.E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Gratzel, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583–585 (1998)CrossRefGoogle Scholar
  3. 3.
    B. Dario, P. Michael, C. Carlo, M. Paul, M. Alessandro, Gold nanoparticle-doped TiO2 semiconductor thin films: gas sensing properties. Adv. Funct. Mater. 18, 3843–3849 (2008)CrossRefGoogle Scholar
  4. 4.
    X.Z. Li, H. Liu, Photocatalytic oxidation using a new catalyst TiO2 microsphere for water and wastewater treatment. Environ. Sci. Technol. 37, 3989–3994 (2003)CrossRefGoogle Scholar
  5. 5.
    J.G. Yu, S.W. Liu, H.G. Yu, Microstructures and photoactivity of mesoporous anatase hollow microspheres fabricated by fluoride-mediated self-transformation. J. Catal. 249, 59–66 (2007)CrossRefGoogle Scholar
  6. 6.
    D.Q. Zhang, G.S. Li, F. Wang, J.C. Yu, Green Synthesis of A Self-Assembled Rutile Mesocrystalline Photocatalyst. CrystEngComm 12, 1759–1763 (2010)CrossRefGoogle Scholar
  7. 7.
    G.K. Mor, K. Shankar, M. Paulose, O. Varghese, C.A. Grimes, Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 6, 215–218 (2006)CrossRefGoogle Scholar
  8. 8.
    H. Xu, F. Jia, Z. Ai, L. Zhang, A General Soft Interface Platform for the Growth and Assembly of Hierarchical Rutile TiO2 Nanorods Spheres. Cryst. Growth Des. 7, 1216–1219 (2007)CrossRefGoogle Scholar
  9. 9.
    L. Francioso, A.M. Taurino, A. Forleo, P. Siciliano, A novel approach towards high-performance composite photocatalyst of TiO2 deposited on activated carbon. Sen. Actuators B Chem. 130, 70–76 (2008)CrossRefGoogle Scholar
  10. 10.
    X.J. Wang, Z.H. Hu, Y.J. Chen, G.H. Zhao, Y.F. Liu, Z.B. Wen, A novel approach towards high-performance composite photocatalyst of TiO2 deposited on activated carbon. Appl. Surf. Sci. 255, 3953–3958 (2009)CrossRefGoogle Scholar
  11. 11.
    R. Wang, X. Cai, F.L. Shen, Preparation of TiO2 hollow microspheres by a novel vesicle template method and their enhanced photocatalytic properties. Ceram. Int. 39, 9465–9470 (2013)CrossRefGoogle Scholar
  12. 12.
    X.X. Li, Y.J. Xiong, Z.Q. Li, Y. Xie, Large-scale fabrication of TiO2 hierarchical hollow spheres. Inorg. Chem. 45, 3493–3495 (2006)CrossRefGoogle Scholar
  13. 13.
    J.G. Yu, J.J. Fan, L. Zhao, Dye-sensitized solar cells based on hollow anatase TiO2 spheres prepared by self-transformation method. Electrochim. Acta 55, 597–602 (2010)CrossRefGoogle Scholar
  14. 14.
    Q. Wang, H. Li, L.Q. Chen, X.J. Huang, Monodispersed hard carbon spherules with uniform nanopores. Carbon 39, 2211–2214 (2001)CrossRefGoogle Scholar
  15. 15.
    X.Y. Zhang, Y.J. Sun, X.L. Cui, Z.Y. Jiang, Carbon-incorporated TiO2 microspheres: facile flame assisted hydrolysis of tetrabutyl orthotitanate and photocatalytic hydrogen production. Int. J. Hydrogen Energy 37, 1356–1365 (2012)CrossRefGoogle Scholar
  16. 16.
    Q. Zhang, W. Li, S.X. Liu, Controlled fabrication of nanosized TiO2 hollow sphere particles via acid catalytic hydrolysis/hydrothermal treatment. Powder Technol. 212, 145–150 (2011)CrossRefGoogle Scholar
  17. 17.
    T. Nonoyama, T. Kinoshita, M. Higuchi, K. Nagata, M. Tanaka, K. Sato, K. Kato, TiO2 Synthesis Inspired by Biomineralization: control of morphology, crystal phase, and light-use efficiency in a single process. J. Am. Chem. Soc. 134, 8841–8847 (2012)CrossRefGoogle Scholar
  18. 18.
    G.G. Tang, S.S. Liu, H. Tang, D. Zhang, C.S. Li, X.F. Yang, Template-assisted hydrothermal synthesis and photocatalytic activity of novel TiO2 hollow nanostructures. Ceram. Int. 39, 4969–4974 (2013)CrossRefGoogle Scholar
  19. 19.
    W.J. Tseng, P.S. Chao, Synthesis and photocatalysis of TiO2 hollow spheres by a facile template-implantation route. Ceram. Int. 39, 3779–3787 (2013)CrossRefGoogle Scholar
  20. 20.
    C. Wang, X. Chu, M. Wu, Highly sensitive gas sensors based on hollow SnO2 spheres prepared by carbon sphere template method. Sens. Actuators B 120, 508–513 (2007)CrossRefGoogle Scholar
  21. 21.
    C.Y. Lee, S.J. Kim, I.S. Hwang, J.H. Lee, Glucose-mediated hydrothermal synthesis and gas sensing characteristics of WO3 hollow microspheres. Sens. Actuators, B 142, 236–242 (2009)CrossRefGoogle Scholar
  22. 22.
    S.R. Wang, L.W. Wang, T.L. Yang, X.H. Liu, J. Zhang, B.L. Zhu, S.M. Zhang, W.P. Huang, S.H. Wu, Porous alpha-Fe2O3 hollow microspheres and their application for acetone sensor. J. Solid State Chem. 183, 2869–2876 (2010)CrossRefGoogle Scholar
  23. 23.
    M. Li, W. Li, S.X. Liu, Hydrothermal synthesis, characterization, and KOH activation of carbon spheres from glucose. Carbohydr. Res. 346, 999–1004 (2011)CrossRefGoogle Scholar
  24. 24.
    J.Q. Xu, W. Chu, S.Z. Luo, Synthesis and characterization of mesoporous V-MCM-41 molecular sieves with good hydrothermal and thermal stability. J. Mol. Catal. A. 256, 48–56 (2006)CrossRefGoogle Scholar
  25. 25.
    X.M. Sun, Y.D. Li, Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew. Chem. Int. Ed. 43, 597–601 (2004)CrossRefGoogle Scholar
  26. 26.
    Y. Li, X.Q. Xu, D.W. Qi, C.H. Deng, P.Y. Yang, X.M. Zhang, Novel Fe3O4@TiO2 core-shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis. J. Proteome Res. 7, 2526–2538 (2008)CrossRefGoogle Scholar
  27. 27.
    P. Muthirulann, C.N. Devi, M.M. Sundaram, TiO2 wrapped graphene as a high performance photocatalyst for acid orange 7 dye degradation under solar/UV light irradiations. Ceram. Int. 40, 5945–5957 (2014)CrossRefGoogle Scholar
  28. 28.
    G. Li, F. Liu, Z. Zhang, Enhanced photocatalytic activity of silica-embedded TiO2 hollow microspheres prepared by one-pot approach. J. Alloys Compd. 493, L1–L7 (2010)CrossRefGoogle Scholar
  29. 29.
    Y.J. Hu, C.Z. Li, F. Gu, Y. Zhao, Facile flame synthesis and photoluminescent properties of core/shell TiO2/SiO2nanoparticles. J. Alloys Compd. 432, L5–L9 (2007)CrossRefGoogle Scholar
  30. 30.
    H.X. Li, Z.F. Bian, J. Zhu, D.Q. Zhang, G.S. Li, Y.N. Huo, H. Li, Y.F. Lu, Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity. J. Am. Chem. Soc. 129, 8406–8407 (2007)CrossRefGoogle Scholar
  31. 31.
    X. Wu, G.Q. Lu, L. Wang, Shell-in-shell TiO2 hollow spheres synthesized by one-pot hydrothermal method for dye-sensitized solar cell application. Energy Environ. Sci. 4, 3565–3572 (2011)CrossRefGoogle Scholar
  32. 32.
    H. Bai, Z. Liu, S.S. Lee, D.D. Sun, The effect of fabrication method of hierarchical 3D TiO2 nanorod spheres on photocatalytic pollutants degradation. Appl. Catal. A 447, 193–199 (2012)CrossRefGoogle Scholar
  33. 33.
    Z. Zheng, B. Huang, X. Qin, X. Zhang, Y. Dai, Strategic synthesis of hierarchical TiO2 microspheres with enhanced photocatalytic activity. Chem. Eur. J. 16, 11266–11270 (2010)CrossRefGoogle Scholar
  34. 34.
    B. Yin, J.T. Wang, W. Xu, D.H. Long, W.M. Qiao, L.C. Ling, Preparation of TiO2/mesoporous carbon composites and their photocatalytic performance for methyl orange degradation. New Carbon Mater. 28, 47–54 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Haojie Song
    • 1
  • Shengsheng You
    • 1
  • Tao Chen
    • 1
  • Xiaohua Jia
    • 2
  1. 1.Institute of Polymer Materials, School of Materials Science and EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China
  2. 2.School of Environment and Safety EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China

Personalised recommendations