Advertisement

Photoelectrocatalytic degradation of methyl red using sprayed WO3 thin films under visible light irradiation

  • Y. M. Hunge
  • V. S. Mohite
  • S. S. Kumbhar
  • K. Y. Rajpure
  • A. V. Moholkar
  • C. H. Bhosale
Article

Abstract

WO3 thin films have been deposited onto glass and FTO coated glass substrates using simple chemical spray pyrolysis technique. The effect of solution concentration on the photoelectrochemical (PEC), structural, morphological and photoelectrocatalytic properties has been investigated. The structure and morphology of WO3 photoelectrodes are studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The PEC study shows that both open circuit voltage (Voc) and short circuit current (Isc) at the optimized solution concentration (0.125 M) are relatively maximum (Isc = 0.62 mA and Voc = 0.58 V). XRD study reveals that the films are polycrystalline in nature with monoclinic crystal structure. SEM images show that the substrate surface is well covered with uniform, compact and fine grain like morphology. The AFM image shows the rough nature of the film. Photoelectrocatalytic degradation of methyl red dye in aqueous solutions is studied. The end result shows that the degradation percentage of methyl red using WO3 photoelectrode has reached 97 % under visible light illumination after 160 min. The amount of mineralization is confirmed by COD and TOC analysis.

Keywords

Chemical Oxygen Demand Total Organic Carbon Photocatalytic Activity Visible Light Irradiation Open Circuit Voltage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors are very much thankful to Department of science and technology (DST), New Delhi for the financial support through the SERB research Project No. SR/S2/CMP-62/2012.

References

  1. 1.
    WHO - Unicef JMP, Progress on Drinking Water and Sanitation (2008)Google Scholar
  2. 2.
    I. Udom, Y. Zhang, M.K. Ram, E.K. Stefanakos, A.F. Hepp, R. Elzein, R. Schlaf, D.Y. Goswami, A simple photolytic reactor employing Ag-doped ZnO nanowires for water purification. Thin Solid Films 564, 258–263 (2014)CrossRefGoogle Scholar
  3. 3.
    A. Mittal, A. Malviya, D. Kaur, J. Mittal, L. Kurup, Studies on the adsorption kinetic and isotherms for the removal and recovery methyl orange from waste waters using waste materials. J. Hazard. Mater. 148, 229–240 (2007)CrossRefGoogle Scholar
  4. 4.
    S. Dadfarniaa, A.M.H. Shabania, S.E. Moradia, S. Emamib, Methyl red removal from water by iron based metal-organic frameworks loaded onto iron oxide nanoparticle adsorbent. Appl. Surf. Sci. 330, 85–93 (2015)CrossRefGoogle Scholar
  5. 5.
    M. Trepel, Assessing the cost-effectiveness of the water purification function of wet lands for environmental planning. Ecol. Complex. 7, 320–326 (2010)CrossRefGoogle Scholar
  6. 6.
    Z.A. Alothman, Y.E. Unsal, M. Habila, A. Shabaka, M. Tuzen, M. Soylak, Membrane filtration of Sudan orange G on a cellulose acetate membrane filter for separation–preconcentration and spectrophotometric determination in water, chili powder, chili sauce and tomato sauce samples. Food Chem. Toxicol. 50, 2709–2713 (2012)CrossRefGoogle Scholar
  7. 7.
    M. Ghaedi, A. Najibi, H. Hossainian, A. Shokrollahi, M. Soylak, Kinetic and equilibrium study of Alizarin Red S removal by activated carbon. Toxicol. Environ. Chem. 94, 40–48 (2012)CrossRefGoogle Scholar
  8. 8.
    G. Muthuraman, T.T. Teng, Extraction of methyl red from industrial wastewater using xylene as an extractant. Prog. Nat. Sci. 19, 1215–1220 (2009)CrossRefGoogle Scholar
  9. 9.
    S.S. Kumbhar, M.A. Mahadik, S.S. Shinde, K.Y. Rajpure, C.H. Bhosale, Fabrication of ZnFe2O4 films and its application in photoelectrocatalytic degradation of salicylic acid. J. Photochem. Photobiol. B 142, 118–123 (2015)CrossRefGoogle Scholar
  10. 10.
    Y. Zhao, X. Wei, Y. Wang, F. Luo, One-pot twelve tungsten phosphate acid assisted electrochemical synthesis of WO3 decorated graphene sheets for high-efficiency UV–light-driven photocatalysis. Chem. Phys. Lett. 607, 34–38 (2014)CrossRefGoogle Scholar
  11. 11.
    M. Hepel, J. Luo, Photoelectrochemical mineralization of textile diazo dye pollutants using nanocrystalline WO3 electrodes. Electrochim. Acta 47, 729–740 (2001)CrossRefGoogle Scholar
  12. 12.
    L.M. Bertus, A. Duta, Synthesis of WO3 thin films by surfactant mediated spray pyrolysis. Ceram. Int. 38, 2873–2882 (2012)CrossRefGoogle Scholar
  13. 13.
    L.M. Bertus, A. Enesca, A. Duta, Influence of spray pyrolysis deposition parameters on the optoelectronic properties of WO3 thin films. Thin Solid Films 520, 4282–4290 (2012)CrossRefGoogle Scholar
  14. 14.
    Jie Zhang, Yoshio Nosaka, Generation of OH radicals and oxidation mechanism in photocatalysis of WO3 and BiVO4 powders. J. Photochem. Photobiol. A 303–304, 53–58 (2015)CrossRefGoogle Scholar
  15. 15.
    Ponchio Chatchai, Atsuko Y. Nosaka, Yoshio Nosaka, Photoelectrocatalytic performance of WO3/BiVO4 toward the dye degradation. Electrochim. Acta 94, 314–319 (2013)CrossRefGoogle Scholar
  16. 16.
    Zhen Xua, Xinjun Li, Juan Li, Liangpeng Wua, Qingyi Zeng, Zhouyu Zhou, Effect of CoOOH loading on the photoelectrocatalytic performance of WO3 nanorod array film. Appl. Surf. Sci. 284, 285–290 (2013)CrossRefGoogle Scholar
  17. 17.
    L.E. Fragaa, J.H. Francoa, M.O. Orlandi, M.V.B. Zanoni, Photoelectrocatalytic oxidation of hair dye basic red 51 at W/WO3/TiO2bicomposite photoanode activated by ultraviolet and visible radiation. J. Environ. Chem. Eng. 1, 194–199 (2013)CrossRefGoogle Scholar
  18. 18.
    Q. Zheng, C. Lee, Visible light photoelectrocatalytic degradation of methyl orange using anodized nanoporous WO3. Electrochim. Acta 94, 314–319 (2013)CrossRefGoogle Scholar
  19. 19.
    M. Zhang, C. Yang, P. Wenhong, Y. Tan, K. Yang, J. Zhang, Liquid phase deposition of WO3/TiO2 heterojunction films with high photoelectrocatalytic activity under visible light irradiation. Electrochim. Acta 148, 180–186 (2014)CrossRefGoogle Scholar
  20. 20.
    M.A. Mahadik, S.S. Shinde, H.M. Pathan, K.Y. Rajpure, C.H. Bhosale, Oxidative degradation of industrial wastewater using spray deposited TiO2/Au:Fe2O3 bilayered thin films. J. Photochem. Photobiol., B 141, 315–324 (2014)CrossRefGoogle Scholar
  21. 21.
    V.S. Mohite, M.A. Mahadik, S.S. Kumbhar, Y.M. Hunge, J.H. Kim, A.V. Moholkar, K.Y. Rajpure, C.H. Bhosale, Photoelectrocatalytic degradation of benzoic acid using Au doped TiO2 thin films. J. Photochem. Photobiol., B 142, 204–211 (2015)CrossRefGoogle Scholar
  22. 22.
    S.M. Pawar, A.V. Moholkar, K.Y. Rajpure, C.H. Bhosale, Electrosynthesis and characterization of CdSe thin films, optimization of preparative parameters by photoelectrochemical technique. J. Phys. Chem. Solids 67, 2386–2391 (2006)CrossRefGoogle Scholar
  23. 23.
    S.S. Shinde, C.H. Bhosale, K.Y. Rajpure, Structural, optical, electrical and thermal properties of zinc oxide thin films by chemical spray pyrolysis. J. Mol. Struct. 2012, 123–129 (1021)Google Scholar
  24. 24.
    C.N.J. Wagner, Local Arrangement for X-ray Diffraction, Chap 7 (Gordon and Breach, New York, 1966)Google Scholar
  25. 25.
    Zhong Xie, Lina Gao, Bo Liang, Xianfu Wang, Gui Chen, Zhe Liu, Junfeng Chao, Di Chen, Guozhen Shen, Fast fabrication of a WO3·2H2O thin film with improved electrochromic properties. J. Mater. Chem. 22, 19904–19910 (2012)CrossRefGoogle Scholar
  26. 26.
    Fumiaki Amano, Eri Ishinaga, Akira Yamakata, Effect of particle size on the photocatalytic activity of WO3 particles for water oxidation. J. Phys. Chem. C 117, 22584–22590 (2013)CrossRefGoogle Scholar
  27. 27.
    D. Wang, L. Guo, Y. Zhen, L. Yue, G. Xue, F. Fu, AgBr quantum dots decorated mesoporous Bi2WO6 architectures with enhanced photocatalytic activities for methylene blue. J. Mater. Chem. A 2, 11716–11727 (2014)CrossRefGoogle Scholar
  28. 28.
    S.S. Shinde, P.S. Shinde, C.H. Bhosale, K.Y. Rajpure, Zinc oxide mediated heterogeneous photocatalytic degradation of organic species under solar radiation. J. Photochem. Photobiol. B 104, 425–433 (2011)CrossRefGoogle Scholar
  29. 29.
    S.S. Shinde, C.H. Bhosale, K.Y. Rajpure, Kinetic analysis of heterogeneous photocatalysis: role of hydroxyl radicals. Catal. Rev. Sci. Eng. 55, 79–133 (2013)CrossRefGoogle Scholar
  30. 30.
    S.S. Shinde, C.H. Bhosale, K.Y. Rajpure, Photocatalytic degradation of toluene using sprayed N-doped ZnO thin films in aqueous suspension. J. Photochem. Photobiol., B 113, 70–77 (2012)CrossRefGoogle Scholar
  31. 31.
    He Zhao, Guangming Zhang, Quanling Zhang, MnO2/CeO2 for catalytic ultrasonic degradation of methyl orange. Ultrason. Sonochem. 21, 991–996 (2014)CrossRefGoogle Scholar
  32. 32.
    S.S. Shinde, C.H. Bhosale, K.Y. Rajpure, Photocatalytic activity of sea water using TiO2 catalyst under solar light. J. Photochem. Photobiol., B 103, 111–117 (2011)CrossRefGoogle Scholar
  33. 33.
    M.A. Mahadik, S.S. Shinde, K.Y. Rajpure, C.H. Bhosale, Photocatalytic oxidation of Rhodamine B with ferric oxide thin films under solar illumination. Mater. Res. Bull. 48, 4058–4065 (2013)CrossRefGoogle Scholar
  34. 34.
    R.T. Sapkal, S.S. Shinde, M.A. Mahadik, V.S. Mohite, T.R. Waghmode, S.P. Govindwar, K.Y. Rajpure, C.H. Bhosale, Photoelectrocatalytic decolorization and degradation of textile effluent using ZnO thin films. J. Photochem. Photobiol., B 114, 102–107 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Y. M. Hunge
    • 1
  • V. S. Mohite
    • 1
  • S. S. Kumbhar
    • 1
  • K. Y. Rajpure
    • 1
  • A. V. Moholkar
    • 1
  • C. H. Bhosale
    • 1
  1. 1.Electrochemical Materials Laboratory, Department of PhysicsShivaji UniversityKolhapurIndia

Personalised recommendations