Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 26, Issue 9, pp 7059–7072 | Cite as

The role of europium and dysprosium in the bluish-green long lasting Sr2Al2SiO7:Eu2+, Dy3+ phosphor by solid state reaction method

  • Ishwar Prasad Sahu
Article

Abstract

The Sr2Al2SiO7; Sr2Al2SiO7:Eu2+; Sr2Al2SiO7:Dy3+ and Sr2Al2SiO7:Eu2+, Dy3+ phosphors were synthesized by the traditional high temperature solid state reaction method. The synthesized phosphors were characterized by powder X-ray diffraction, energy dispersive X-ray spectroscopy, thermoluminescence (TL), photoluminescence (PL) long afterglow and mechanoluminescence (ML) techniques. The crystal structures of sintered phosphors were gehlenite type structure which belongs to the tetragonal crystallography. The TL properties of these phosphors were investigated and results were also compared. Under the ultraviolet excitation, the emission spectra of Sr2Al2SiO7:Eu2+ and Sr2Al2SiO7:Eu2+, Dy3+ phosphors were composed of a broad band peaking at 490 nm (bluish-green), belonging to the broad emission band and Sr2Al2SiO7:Dy3+ phosphor emits the white light, which was confirmed from the calculated CIE coordinates. When the Sr2Al2SiO7:Eu2+ phosphor is co-doped with Dy3+, the intensity of TL, PL, afterglow and ML is strongly enhanced. Decay graph indicate that both the sintered phosphors contains fast decay and slow decay process. The ML intensities of Sr2Al2SiO7:Dy3+; Sr2Al2SiO7:Eu2+ and Sr2Al2SiO7:Eu2+, Dy3+ phosphors were proportionally increased with the increasing impact velocity of the moving piston, which suggests that these phosphor can be used as sensors to detect the stress of an object.

Keywords

Glow Curve Thermally Stimulate Luminescence Trap Depth Glow Peak White Light Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are very much grateful to UGC-DAE Consortium for Scientific Research, Indore (M.P.) for the XRD Characterization and we are also very much thankful to Dr. Mukul Gupta for his co-operation.

References

  1. 1.
    N. Lakshminarasimhan, U.V. Varadaraju, Mater. Res. Bull. 43, 2946–2953 (2008)CrossRefGoogle Scholar
  2. 2.
    H.W. Leverenz, An Introduction to Luminescence of Solids (Dover Publications Inc., New York, 1968)Google Scholar
  3. 3.
    I.P. Sahu, D.P. Bisen, N. Brahme, M. Ganjir, Lumin. J. Biol. Chem. Lumin. (2015). doi: 10.1002/bio.2869 Google Scholar
  4. 4.
    H. Wu, Y. Hu, L. Chen, X. Wang, J. Alloys Compds. 509, 4304–4307 (2011)CrossRefGoogle Scholar
  5. 5.
    Y. Chen, X. Cheng, M. Liu, Z. Qi, C. Shi, J. Lumin. 129, 531–535 (2009)CrossRefGoogle Scholar
  6. 6.
    H. Wu, Y. Hu, G. Ju, L. Chen, X. Wang, Z. Yang, J. Lumin. 131, 2441–2445 (2011)CrossRefGoogle Scholar
  7. 7.
    S.H.M. Poort, W.P. Blokpoel, G. Blasse, Chem. Mater. 7, 1547–1551 (1995)CrossRefGoogle Scholar
  8. 8.
    R. Shrivastava, J. Kaur, Chin. Chem. Lett. (2015). doi: 10.1016/j.cclet.2015.05.028 Google Scholar
  9. 9.
    K.Y. Jung, H.W. Lee, H.K. Jung, Chem. Mater. 18, 2249–2255 (2006)CrossRefGoogle Scholar
  10. 10.
    X.J. Li, Y.D. Qu, X.H. Xie, Z.L. Wang, R.Y. Li, Mater. Lett. 60, 3673–3677 (2006)CrossRefGoogle Scholar
  11. 11.
    H. Takasaki, S. Tanabe, T. Hanada, J. Ceram. Soc. Jpn 104, 322–326 (1996)CrossRefGoogle Scholar
  12. 12.
    H. Yamamoto, T. Matsuzawa, J. Lumin. 73, 287–289 (1997)CrossRefGoogle Scholar
  13. 13.
    I.P. Sahu, D.P. Bisen, N. Brahme, J. Radiat. Res. Appl. Sci. (2015). doi: 10.1016/j.jrras.2015.02.007 Google Scholar
  14. 14.
    M. Kimata, Z. Kristallogr. 167, 103–116 (1984)CrossRefGoogle Scholar
  15. 15.
    M. Merlini, M. Gemmi, G. Artioli, Z. Kristallogr. Suppl. 23, 419–424 (2006)CrossRefGoogle Scholar
  16. 16.
    Q. Zhang, J. Wang, M. Zhang, Q. Su, Appl. Phys. B 92, 195–198 (2008)CrossRefGoogle Scholar
  17. 17.
    X. Tan, J. Alloys Compds. 477, 648–651 (2009)CrossRefGoogle Scholar
  18. 18.
    C.N. Xu, T. Wantanabe, M. Akiyama, X.G. Zheng, Appl. Phys. Lett. 74, 1236–1238 (1999)CrossRefGoogle Scholar
  19. 19.
    I.P. Sahu, D.P. Bisen, R.K. Tamrakar, R. Shrivastava, Res. Chem. Intermed. (2015). doi: 10.1007/s11164-015-2120-4 Google Scholar
  20. 20.
    C.N. Xu, T. Wantanabe, M. Akiyama, X.G. Zheng, Appl. Phys. Lett. 74, 2414–2416 (1999)CrossRefGoogle Scholar
  21. 21.
    C.N. Xu, X.G. Zheng, M. Akiyama, K. Nonaka, T. Wantanabe, Appl. Phys. Lett. 76, 179–181 (2000)CrossRefGoogle Scholar
  22. 22.
    C.N. Xu, X.G. Zheng, T. Wantanabe, M. Akiyama, I. Usui, Thin Solid Films 352, 273–278 (1999)CrossRefGoogle Scholar
  23. 23.
    C. Zhao, D. Chen, Y. Yuan, M. Wu, Mater. Sci. Eng., B 133, 200–204 (2006)CrossRefGoogle Scholar
  24. 24.
    JCPDS file number 75-1234, JCPDS International Center for Diffraction DataGoogle Scholar
  25. 25.
    S. Basuna, G.F. Imbuschb, D.D. Jiac, W.M. Yenc, J. Lumin. 104, 283–294 (2003)CrossRefGoogle Scholar
  26. 26.
    R. Chen, Y. Kirsh, Pergamon Press. Oxford 15, 167 (1981)Google Scholar
  27. 27.
    F.M. Emen, N. Kulcu, A.N. Yazici, Eur. J. Chem. 1(1), 28–32 (2010)CrossRefGoogle Scholar
  28. 28.
    R. Chen, J. Appl. Phys. 40(2), 570–585 (1969)CrossRefGoogle Scholar
  29. 29.
    I.P. Sahu, D.P. Bisen, N. Brahme, Displays 38, 68–76 (2015)CrossRefGoogle Scholar
  30. 30.
    C.Y. Li, Q. Su, J.R. Qiu, Chin. J. Lumin. 24, 19–27 (2003)Google Scholar
  31. 31.
    H.N. Luitel, T. Watari, R. Chand, T. Torikai, M. Yada, H. Mizukami, Mater. Sci. Eng., B 178(12), 834–842 (2013)CrossRefGoogle Scholar
  32. 32.
    T. Katsumata, R. Sakai, S. Komuro, T. Morikawa, J. Electrochem. Soc. 150, H111–H114 (2003)CrossRefGoogle Scholar
  33. 33.
    Z. Yuan, C. Chang, D. Mao, W. Ying, J. Alloys Compd. 377(1–2), 268–271 (2004)CrossRefGoogle Scholar
  34. 34.
    H. Kubo, H. Aizawa, T. Katsumata, S. Komuro, T. Morikawa, J. Cryst. Growth 275(12), 1767–1771 (2005)CrossRefGoogle Scholar
  35. 35.
    H. Wu, Y. Hu, B. Zeng, Z. Mou, L. Deng, J. Phys. Chem. Solids 72, 1284–1289 (2011)CrossRefGoogle Scholar
  36. 36.
    V. Pagonis, G. Kitis, C. Furetta, Numerical and Practical Exercises in Thermoluminescence (Springer, Berlin, 2006)Google Scholar
  37. 37.
    R. Chen, S.W.S. McKeever, Theory of Thermoluminescence and Related Phenomenon (World Scientific Press, Singapore, 1997)CrossRefGoogle Scholar
  38. 38.
    M. Mashangva, M.N. Singh, T.B. Singh, Indian J. Pure Appl. Phys. 49, 583–589 (2011)Google Scholar
  39. 39.
    G.S.R. Raju, J.Y. Park, H.C. Jung, B.K. Moon, J.H. Jeong, J.H. Kim, Curr. Appl Phys. 9(2), 92–95 (2009)CrossRefGoogle Scholar
  40. 40.
    N.N. Yamashita, J. Phys. Soc. Jpn. 35, 1089–1097 (1973)CrossRefGoogle Scholar
  41. 41.
    A. Zukauskas, M.S. Shur, R. Gaska, Introduction to Solid State Lighting (Wiley, New York, 2002)Google Scholar
  42. 42.
    I.P. Sahu, D.P. Bisen, N. Brahme, Displays 35, 279–286 (2014)CrossRefGoogle Scholar
  43. 43.
    I.P. Sahu, D.P. Bisen, N. Brahme, M. Ganjir, Lumin. J. Biol. Chem. Lumin. (2015). doi: 10.1002/bio.2900 Google Scholar
  44. 44.
    CIE 1931. International Commission on Illumination. Publication CIE no. 15 (E-1.3.1) 1931Google Scholar
  45. 45.
    G. Blasse, B.C. Grabmarier, Luminescent Materials (Springer, Berlin, 1994), p. 96CrossRefGoogle Scholar
  46. 46.
    I.P. Sahu, D.P. Bisen, N. Brahme, R.K. Tamrakar, J. Radiat. Res. Appl. Sci. 8, 104–109 (2015)CrossRefGoogle Scholar
  47. 47.
    R. Sakai, T. Katsumata, S. Komuro, T. Morikawa, J. Lumin. 85, 149–154 (1999)CrossRefGoogle Scholar
  48. 48.
    I.P. Sahu, D.P. Bisen, N. Brahme, R. Sharma, Res. Chem. Intermed. (2014). doi: 10.1007/s11164-014-1767-6 Google Scholar
  49. 49.
    I.P. Sahu, D.P. Bisen, N. Brahme, L. Wanjari, R.K. Tamrakar, Res. Chem. Intermed. (2015). doi: 10.1007/s11164-015-1929-1 Google Scholar
  50. 50.
    T. Aitasalo, J. Holsa, H. Jungner, M. Lastusaari, J. Niittykoski, J. Phys. Chem. B 110, 4589–4598 (2006)CrossRefGoogle Scholar
  51. 51.
    K.V.D. Eeckhout, P.F. Smet, D. Poelman, Materials 3, 2536–2566 (2010)CrossRefGoogle Scholar
  52. 52.
    D.R. Vij, Luminescence of Solids (Plenum Press, New York, 1998)CrossRefGoogle Scholar
  53. 53.
    B.P. Chandra, J. Lumin. 131, 1203–1210 (2011)CrossRefGoogle Scholar
  54. 54.
    I.P. Sahu, D.P. Bisen, N. Brahme, Lumin. J. Biol. Chem. Lumin. (2014). doi: 10.1002/bio.2771 Google Scholar
  55. 55.
    B.P. Chandra, R.A. Rathore, Cryst. Res. Tech. 30, 885–896 (1995)CrossRefGoogle Scholar
  56. 56.
    H. Zhang, H. Yamada, N. Terasaki, C.N. Xu, Thin Solid Films 518, 610–613 (2009)CrossRefGoogle Scholar
  57. 57.
    H. Zhang, H. Yamada, N. Terasaki, C.N. Xu, Int. J. Mod. Phys. B 23, 1028–1033 (2009)CrossRefGoogle Scholar
  58. 58.
    H. Zhang, H. Yamada, N. Terasaki, C.N. Xu, Phys. E 42, 2872–2875 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Studies in Physics and AstrophysicsPt. Ravishankar Shukla UniversityRaipurIndia

Personalised recommendations