Influence of temperature on MWCNT bundle, SWCNT bundle and copper interconnects for nanoscaled technology nodes

  • Karmjit SinghEmail author
  • Balwinder Raj


This paper presents the comparative analysis of temperature dependent performance of Multi-walled carbon nanotubes (MWCNT), Single-walled carbon nanotube (SWCNT) and copper interconnects for nanoscaled technology nodes. The temperature dependent impedance circuit model is proposed for MWCNT bundle interconnects. The proposed model for MWCNT bundle shows the various electron–phonon scattering mechanisms dependency as a function of temperature. The performance in terms of propagation delay, power dissipation and power delay product for MWCNT bundle interconnects is simulated on the basis of temperature dependent electrical parameters for global interconnects at three different technology nodes viz. 32, 22 and 16 nm for temperature range 200 to 450 K. A similar analysis is performed for SWCNT bundle and copper interconnects and results are compared with the MWCNT bundle interconnects. The comparative results revealed that the performance of MWCNT bundle interconnects is better than the performance of SWCNT bundle and copper interconnects at different temperature ranging from 200 to 450 K for 32, 22 and 16 nm technology nodes at global interconnects.


Mean Free Path Technology Node Quantum Capacitance Integrate Circuit Temperature Dependent Impedance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    W. Steinhogl, G. Schindler, G. Steinlesberger, M. Traving, M. Engelhardt, Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller. J. Appl. Phys. 97, 023706/1–023706/7 (2005)CrossRefGoogle Scholar
  2. 2.
    A. Naeemi, R. Sarvari, J.D. Meindl, Performance comparison between carbon nanotube and copper interconnects for giga scale integration (GSI). Electron Device Lett. 26(2), 84–86 (2005)CrossRefGoogle Scholar
  3. 3.
    H. Li, C. Xu, N. Srivastava, K. Banerjee, Carbon nanomaterials for next-generation interconnects and passives: physics, status and prospects. IEEE Trans. Electron Devices 56(9), 1799–1821 (2009)CrossRefGoogle Scholar
  4. 4.
    K. Banerjee, N. Srivastava, Are carbon nanotubes the future of VLSI interconnections?. in Proceedings of Design Automation Conference, pp. 809–814 (2006)Google Scholar
  5. 5.
    M.K. Rai, S. Sarkar, Influence of distance between adjacent tubes on SWCNT bundle interconnects delay and power dissipation. J. Comput. Electron. 12(4), 796–802 (2013)CrossRefGoogle Scholar
  6. 6.
    Q. Jiang, Y. Zhao, X.Y. Lu, Q. Zhan, Y. L. Zhou, Effects of activation temperature on the electrochemical capacitance of activated carbon nanotubes. J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-006-7473-4
  7. 7.
    N. Srivastava, H. Li, F. Kreupl, K. Banerjee, On the applicability of single-walled carbon nanotubes as VLSI interconnects. IEEE Trans. Nanotechnol. 8(4), 542–559 (2009)CrossRefGoogle Scholar
  8. 8.
    P.J. Burke, Lüttinger liquid theory as a model of the Gigahertz electrical properties of carbon nanotubes. IEEE Trans. Nanotechnol. 1(3), 129–144 (2002)CrossRefGoogle Scholar
  9. 9.
    A. Hosseini, V. Shbro, Thermally-aware modeling and performance evaluation for single-walled carbon nanotube-based interconnects for future high performance integrated circuits. Microelectron. Eng. 87(10), 1955–1962 (2010)CrossRefGoogle Scholar
  10. 10.
    E. Pop, D. Mann, J. Reifenberg, K. Goodson, H. Dai, Electrical and thermal transport in metalic single-wall carbon nanotubes for interconnect application. J. Appl. Phys. 101, 093710–093720 (2007)CrossRefGoogle Scholar
  11. 11.
    E. Pop, D. Mann, J. Reifenberg, K. Goodson, H. Dai, Electro-thermal transport in metalic single-wall carbon nanotubes for interconnect application. in Technical Digest of IEEE International Electron device meeting 2005 IEDM, pp. 254–256 (2005)Google Scholar
  12. 12.
    A.G. Chiarillo, G. Miano, A. Maffucci, Size and temperature on resistance of copper and carbon nanotubes nano-interconnects. IEEE Electron Devices Lett. 55(6), 97–100 (2010)Google Scholar
  13. 13.
    W. Liang, M. Bockrath, D. Bozovic, J.H. Hafner, M. Tinkham, H. Park, Fabry-Perot interference in a nanotube electron waveguide. Nature 411, 665–669 (2001)CrossRefGoogle Scholar
  14. 14.
    H. Li, W.Y. Yin, K. Banerjee, J.F. Mao, Circuit modeling and performance analysis of multi-walled carbon nanotube interconnects. IEEE Trans. Electron Devices 55(6), 1328–1337 (2008)CrossRefGoogle Scholar
  15. 15.
    M. Sahoo, H. Rahaman, Performance analysis of multiwalled carbon nanotube bundles. in IEEE XXXIII International Scientific Conference Electronics and Nanotechnology (ELNANO), pp. 200–203 (2013)Google Scholar
  16. 16.
    H.J. Li, W.G. Lu, J.J. Li, X.D. Bai, C.Z. Gu, Multichannel ballistic transport in multiwall carbon nanotubes. Phys. Rev. Lett. 95(8), 86601 (2005)CrossRefGoogle Scholar
  17. 17.
    A. Naeemi, J.D. Meindl, A compact physical model for multiwall carbon-nanotube interconnects. IEEE Electron Device Lett. 27(5), 338–340 (2006)CrossRefGoogle Scholar
  18. 18.
    C. Rutherglen, P.J. Burke, Nanoelectromagnetics: circuit and electromagnetic properties of carbon nanotubes. Small 5(8), 884–906 (2009)CrossRefGoogle Scholar
  19. 19.
    P.G. Collins, P. Avouris, Multishell conduction in multiwalled carbon nanotubes. Appl. Phys. A Solids Surf. 74(3), 329–332 (2002)CrossRefGoogle Scholar
  20. 20.
    Ashok Srivastav, Yao Xu, Ashwani K. Sharma, Carbon nanotubes for next generation very large scale integration interconnects. J. Nanophotonics 4(1), 041690 (2010)CrossRefGoogle Scholar
  21. 21.
    Y.G. Yoon, P. Delaney, S.G. Louie, Quantum conductance of multiwall carbon nanotubes. Phys. Rev. B 66(7), 073407/1–073407/7 (2002)CrossRefGoogle Scholar
  22. 22.
    ITRS, International Technology Roadmap for Semiconductor, Edition (2013)
  23. 23.
    B. Kumar, B.K. Kaushik, Y.S. Negi, Perspectives and challenges for organic thin film transistors: materials, devices, processes and applications. J. Mater. Sci. Mater. Electron. 25(1), 1–30 (2014)CrossRefGoogle Scholar
  24. 24.
    Predictive technology model.
  25. 25.
    M.K. Majumder, N.D. Pandya, B.K. Kaushik, S.K. Manhas, Analysis of MWCNT and bundled SWCNT interconnects: impact on crosstalk and area. IEEE Electron Device Lett. 33(8), 1080–1082 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringThapar UniversityPatialaIndia
  2. 2.Department of Electronics and Communication EngineeringNational Institute of TechnologyJallandharIndia

Personalised recommendations