Characterization of interface defects in BiFeO3 metal–oxide–semiconductor capacitors deposited by radio frequency magnetron sputtering

  • Senol Kaya
  • Ercan Yilmaz
  • Aliekber Aktag
  • Jan Seidel


In this work, we study the structural and electrical properties of BiFeO3 MOS capacitors with a special focus on the oxide–semiconductor interface for gate dielectric applications. For this purpose BiFeO3 thin films with a thickness of 300 nm were deposited on p-type Si (100) substrates at 0 °C by RF sputtering. Half of the films were annealed at 550 °C for 30 min in atmospheric environment while the other half were kept as-deposited. XRD and SEM measurements were performed for both samples for structural characterization. MOS capacitors were fabricated by evaporation technique using Al from samples. For electrical characterizations of MOS capacitors, capacitance–voltage (C–V), conductance–frequency (Gp/ω–F) and leakage current density–voltage (J–V) measurements were performed. The XRD analyses show that BiFeO3 thin films are polycrystalline with some impurity phases, which influence the electronic device properties. The formation of crystallization is confirmed by SEM measurements. Debye length, barrier height and flat band voltages showed variations due to the frequency dependent charges, partially originating from interface defects, in the device structure. Therefore ignoring effects of frequency dependent charges can lead to significant errors in the analysis of electrical characteristics of MOS capacitors. Moreover, the obtained results from analyses of C–V, Gp/ω–F and J–V characteristics of annealed samples depict that all measured and calculated parameters are of the same order for novel MOS devices. Hence, the BiFeO3 dielectric layer in fabricated MOS devices exhibits a stable insulation property for gate dielectric applications.


BiFeO3 Leakage Current Density Scanning Electron Microscopy Measurement Interface State Density Flat Band Voltage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Middle East Technical University for providing experimental facilities and their generous support. This work is supported by Abant Izzet Baysal University under Contract Number: AIBU, BAP.2011.03.02.439, the Ministry of Development of Turkey under Contract Number: 2012K120360 and the Australian Research Council under Grant Numbers FT110100523, DP140100463 and DP140102849.


  1. 1.
    S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)Google Scholar
  2. 2.
    H. Bentarzi, Transport in Metal–Oxide–Semiconductor Structures (Springer, Berlin, 2011)CrossRefGoogle Scholar
  3. 3.
    V. Edon, M.C. Hugon, B. Agius, C. Cohen, C. Cardinaud, C. Eypert, Thin Solid Films 515, 7782–7789 (2007)CrossRefGoogle Scholar
  4. 4.
    P. Morgen, T. Jensen, C. Gundlach, L.B. Taekker, S.V. Hoffman, Z.S. Li, K. Pedersen, Phys. Scr. T101, 26–29 (2002)CrossRefGoogle Scholar
  5. 5.
    S.K. Nandi, S. Chakraborty, M.K. Bera, C.K. Maiti, Bull. Mater. Sci. 30, 247–254 (2007)CrossRefGoogle Scholar
  6. 6.
    W. Fan, J. Cao, J. Seidel, Y. Gu, J.W. Yim, C. Barrett, K.M. Yu, J. Ji, R. Ramesh, L.Q. Chen, J. Wu, Phys. Rev. B 83, 054506 (2011)CrossRefGoogle Scholar
  7. 7.
    C.H. Yang, D. Kan, I. Takeuchi, V. Nagarajan, J. Seidel, Phys. Chem. Chem. Phys. 14, 15953–15962 (2012)CrossRefGoogle Scholar
  8. 8.
    G. Catalan, J. Seidel, R. Ramesh, J.F. Scott, Rev. Mod. Phys. 84, 119–156 (2012)CrossRefGoogle Scholar
  9. 9.
    J. Seidel, J. Phys. Chem. Lett. 3, 2905–2909 (2012)CrossRefGoogle Scholar
  10. 10.
    G. Catalan, J.F. Scott, Adv. Mater. 21, 2463–2485 (2009)CrossRefGoogle Scholar
  11. 11.
    S. Kamba, D. Nuzhnyy, M. Savinov, J. Sebek, J. Petzelt, J. Prokleska, R. Haumont, J. Kreisel, Phys. Rev. B 75, 024403 (2007)CrossRefGoogle Scholar
  12. 12.
    K.Y. Yun, M. Noda, M. Okuyama, H. Saeki, H. Tabata, K. Saito, J. Appl. Phys. 96, 3399–3403 (2004)CrossRefGoogle Scholar
  13. 13.
    D.J. Huang, H.M. Deng, P.X. Yang, J.H. Chu, Mater. Lett. 64, 2233–2235 (2010)CrossRefGoogle Scholar
  14. 14.
    B.C. Luo, C.L. Chen, K.X. Jin, Mater. Chem. Phys. 132, 364–367 (2012)CrossRefGoogle Scholar
  15. 15.
    H.W. Chang, F.T. Yuan, C.W. Shih, C.S. Ku, P.H. Chen, C.R. Wang, W.C. Chang, S.U. Jen, H.Y. Lee, Nanoscale Res. Lett. 7, 1–5 (2012)CrossRefGoogle Scholar
  16. 16.
    B.S. Soram, B.S. Ngangom, H.B. Sharma, Thin Solid Films 524, 57–61 (2012)CrossRefGoogle Scholar
  17. 17.
    P. Dash, B.N. Dash, H. Rath, C. Rath, N.C. Mishra, Indian J. Phys. 83, 485–491 (2009)CrossRefGoogle Scholar
  18. 18.
    M. Ohring, The Materials Science of Thin Films, 2nd edn. (Academic Press, New York, 1992)Google Scholar
  19. 19.
    S. Kaya, R. Lok, A. Aktag, J. Seidel, E. Yilmaz, J. Alloys Compd. 583, 476–480 (2014)CrossRefGoogle Scholar
  20. 20.
    H.P. Klug, B.E. Alexander, X-ray Diffraction Procedures (Wiley, New York, 1974)Google Scholar
  21. 21.
    M.C. Sekhar, P. Kondaiah, S.V.J. Chandra, G.M. Rao, S. Uthanna, Surf. Interface Anal. 44, 1299–1304 (2012)CrossRefGoogle Scholar
  22. 22.
    E.M.F. Vieira, R. Diaz, J. Grisolia, A. Parisini, J. Martin-Sanchez, S. Levichev, A.G. Rolo, A. Chahboun, M.J.M. Gomes, J. Phys. D Appl. Phys. 46, 095306 (2013)CrossRefGoogle Scholar
  23. 23.
    A. Tataroglu, S. Altindal, Microelectron. Eng. 85, 2256–2260 (2008)CrossRefGoogle Scholar
  24. 24.
    H. Xiao, S.H. Huang, Mater. Sci. Semicond. Process. 13, 395–399 (2010)CrossRefGoogle Scholar
  25. 25.
    L. Soliman, E. Duval, M. Benzohra, E. Lheurette, K. Ketata, M. Ketata, Mater. Sci Semicond. Process. 4, 163–166 (2001)CrossRefGoogle Scholar
  26. 26.
    N.M. Murari, R. Thomas, S.P. Pavunny, J.R. Calzada, R.S. Katiyar, Appl. Phys. Lett. 94, 142907 (2009)CrossRefGoogle Scholar
  27. 27.
    T. Ahmed, A. Vorobiev, S. Gevorgian, Thin Solid Films 520, 4470–4474 (2012)CrossRefGoogle Scholar
  28. 28.
    V. Singh, S.K. Sharma, D. Kumar, R.K. Nahar, Microelectron. Eng. 91, 137–143 (2012)CrossRefGoogle Scholar
  29. 29.
    H. Ke, W. Wang, Y. Wang, H. Zhang, D. Jia, Y. Zhou, X. Lu, P. Withers, J. Alloys Compd. 541, 94–98 (2012)CrossRefGoogle Scholar
  30. 30.
    L.H. Chong, K. Mallik, C.H. de Groot, R. Kersting, J. Phys. Condens. Matter 18, 645–657 (2006)CrossRefGoogle Scholar
  31. 31.
    S. Kaya, E. Yilmaz, Nuclear Instrum. Meth. B 319, 168–170 (2014)CrossRefGoogle Scholar
  32. 32.
    P.M. Tirmali, A.G. Khairnar, B.N. Joshi, A.M. Mahajan, Solid State Electron. 62, 44–47 (2011)CrossRefGoogle Scholar
  33. 33.
    E.H. Nicollian, J.R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 2003)Google Scholar
  34. 34.
    S. Altindal, A. Tataroglu, I. Dokme, Sol. Energy Mater. Sol. Cells 85, 345–358 (2005)CrossRefGoogle Scholar
  35. 35.
    P. Chattopadhyay, A.N. Daw, Solid State Electron. 29, 555–560 (1986)CrossRefGoogle Scholar
  36. 36.
    N. Konofaos, Microelectr. J. 35, 421–425 (2004)CrossRefGoogle Scholar
  37. 37.
    A.A. Dakhel, Thin Solid Films 496, 353–359 (2006)CrossRefGoogle Scholar
  38. 38.
    L. You, N.T. Chua, K. Yao, L. Chen, J.L. Wang, Phys. Rev. B 80, 024105 (2009)CrossRefGoogle Scholar
  39. 39.
    H. Bea, M. Bibes, A. Barthelemy, K. Bouzehouane, E. Jacquet, A. Khodan, J.P. Contour, S. Fusil, F. Wyczisk, A. Forget, D. Lebeugle, D. Colson, M. Viret, Appl. Phys. Lett. 87, 072508 (2005)CrossRefGoogle Scholar
  40. 40.
    V. Shelke, V.N. Harshan, S. Kotru, A. Gupta, J Appl Phys 106, 104114 (2009)CrossRefGoogle Scholar
  41. 41.
    Y. Shuai, S.Q. Zhou, S. Streit, H. Reuther, D. Burger, S. Slesazeck, T. Mikolajick, M. Helm, H. Schmidt, Appl. Phys. Lett. 98, 232901 (2011)CrossRefGoogle Scholar
  42. 42.
    X.Y. Zhang, Q. Song, F. Xu, C.K. Ong, Appl. Phys. Lett. 94, 022907 (2009)CrossRefGoogle Scholar
  43. 43.
    A. Srivastava, R.K. Nahar, C.K. Sarkar, J. Mater. Sci. Mater. Electron. 22, 882–889 (2011)CrossRefGoogle Scholar
  44. 44.
    Y.-H. Wu, M.-L. Wu, J.-R. Wu, Y.-S. Lin, Microelectron. Eng. 87, 2423–2428 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Senol Kaya
    • 1
    • 2
  • Ercan Yilmaz
    • 1
    • 2
  • Aliekber Aktag
    • 1
    • 2
  • Jan Seidel
    • 3
  1. 1.Physics DepartmentAbant Izzet Baysal UniversityBoluTurkey
  2. 2.Nuclear Radiation Detectors Research and Development CenterBoluTurkey
  3. 3.School of Materials Science and EngineeringUniversity of New South WalesSydneyAustralia

Personalised recommendations