Advertisement

In-depth structure characterization and properties of (1−x)(Li0.05Na0.475K0.475)(Nb0.95Sb0.05)O3xBiFeO3 lead-free piezoceramics

  • M. H. JiangEmail author
  • G. Q. Zhao
  • Z. F. Gu
  • G. Cheng
  • X. Y. Liu
  • L. Li
  • Y. S. Du
Article

Abstract

(1−x)(Li0.05Na0.475K0.475)(Nb0.95Sb0.05O3)−xBiFeO3 ceramics were prepared by the conventional sintering method. The microstructure, phases and their relative volume fractions were investigated in detail by using transmission electron microscopy and X-ray diffraction. Fullprof and Topas softwares were also used to refine the X-ray diffraction data to confirm the crystal structure. The refinement results show that for x ≤ 0.008, the ceramics consists of the orthorhombic and tetragonal perovskite phases, and the fraction of the orthorhombic phase decreases from 50.66 % for x = 0.0 to 40.62 % for x = 0.008. When x = 0.01, the ceramics has a mixed microstructure with three coexisting phases: the orthorhombic, tetragonal perovskite phases and tetragonal tungsten bronze-type structure phase, and the fraction of the tetragonal tungsten bronze-type structure phase is 6.72 %. The selected area electron diffraction data is also consistent with the space groups for all of the above phases. This system also exhibits good ferroelectric and piezoelectric properties for applications, for example, at x = 0.004, the ceramic samples have a piezoelectric constant (d 33) of 272 pC/N and remanent polarization (P r) of 20.6 μC/cm2.

Keywords

BiFeO3 Piezoelectric Property Remanent Polarization Electron Diffraction Data Mixed Microstructure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors are very grateful to Professor G.H. Rao for his supervision in the refining of the crystal structure. This work was financially also supported by National Natural Science Foundation of China (51102056), Guangxi Natural Science Foundation (2012GXNSFGA060002, 2012GXNSFAA053198), the Key Laboratory of Inorganic function material and device, Chinese Academy of Sciences(KLIFMD-2011-03), Research funds Guangxi Experiment Center of Information Science (20130309), and Program for Excellent Talents in Guangxi Higher Education Institutions.

References

  1. 1.
    L. Egerton, D.M. Dillon, J. Am. Ceram. Soc. 42, 438–442 (1959)CrossRefGoogle Scholar
  2. 2.
    Z.Y. Shen, J.F. Li, J. Chin. Ceram. Soc. 38, 510–520 (2010)Google Scholar
  3. 3.
    S.J. Zhang, R. Xia, T.R. Shrout, G.Z. Zang, J.F. Wang, J. Appl. Phys. 100, 104108-104108-6 (2006)Google Scholar
  4. 4.
    D.M. Lin, K.W. Kwok, K.H. Lam, H.L.W. Chan, J. Appl. Phys. 101, 074111-1–074111-6 (2007)Google Scholar
  5. 5.
    J.G. Wu, D.Q. Xiao, Y.Y. Wang, J.G. Zhu, P. Yu, Y.H. Jiang, J. Appl. Phys. 102, 114113-1–114113-5 (2007)Google Scholar
  6. 6.
    M.S. Kim, D.S. Lee, E.C. Park, S.J. Jeong, J.S. Song, J. Eur. Ceram. Soc. 27, 4121–4124 (2007)CrossRefGoogle Scholar
  7. 7.
    D.J. Liu, H.L. Du, F.S. Tang, F. Luo, D.M. Zhu, W.C. Zhou, J. Electroceram. 20, 107–111 (2008)CrossRefGoogle Scholar
  8. 8.
    K.H. Cho, H.Y. Park, C.W. Ahn, S. Nahm, H.G. Lee, H.J. Lee, J. Am. Ceram. Soc. 90, 1946–1949 (2007)CrossRefGoogle Scholar
  9. 9.
    X.P. Wang, J.G. Wu, D.Q. Xiao, J.G. Zhu, X.J. Cheng, T. Zheng, B.Y. Zhang, X.J. Lou, X.J. Wang, J. Am. Chem. Soc. 136, 2905–2910 (2014)CrossRefGoogle Scholar
  10. 10.
    M.H. Jiang, X.Y. Liu, G.H. Chen, Scr. Mater. 60, 909–912 (2009)CrossRefGoogle Scholar
  11. 11.
    Y.H. Zhen, J.F. Li, J. Am. Ceram. Soc. 90, 3496–3502 (2007)CrossRefGoogle Scholar
  12. 12.
    M.D. Maeder, D. Damjanovic, N. Setter, J. Electroceram. 13, 385–392 (2004)CrossRefGoogle Scholar
  13. 13.
    A. Reisman, F. Holtzberg, J. Am. Chem. Soc. 77, 2115–2119 (1955)CrossRefGoogle Scholar
  14. 14.
    H. Birol, D. Damjanovic, N. Setter, J. Eur. Ceram. Soc. 26, 861–866 (2006)CrossRefGoogle Scholar
  15. 15.
    Y.F. Chang, Z.P. Yang, L.L. Wei, B. Liu, Mater. Sci. Eng. A 437, 301–305 (2006)CrossRefGoogle Scholar
  16. 16.
    Y.Q. Lu, Y.X. Li, J. Adv. Dielectr. 1, 269–288 (2011)CrossRefGoogle Scholar
  17. 17.
    L. Egerton, D.M. Dillon, J. Am. Ceram. Soc. 42, 438–442 (1959)CrossRefGoogle Scholar
  18. 18.
    R.Z. Zuo, C. Ye, X.S. Fang, J. Phys. Chem. Solids 69, 230–235 (2008)CrossRefGoogle Scholar
  19. 19.
    S.J. Zhang, R. Xia, T.R. Shrout, G.Z. Zang, J.F. Wang, J. Appl. Phys. 100, 104108 (2006)CrossRefGoogle Scholar
  20. 20.
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84–87 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • M. H. Jiang
    • 1
    Email author
  • G. Q. Zhao
    • 1
  • Z. F. Gu
    • 1
  • G. Cheng
    • 1
  • X. Y. Liu
    • 1
  • L. Li
    • 1
  • Y. S. Du
    • 1
  1. 1.Department of Materials Science and Engineering, Guangxi Key Laboratory of Information MaterialsGuilin University of Electronic TechnologyGuilinChina

Personalised recommendations