Characterization of transport properties of organic semiconductors using impedance spectroscopy

  • Kenichiro Takagi
  • Soichiro Abe
  • Takashi Nagase
  • Takashi Kobayashi
  • Hiroyoshi Naito
Article

Abstract

Methods for the determination of drift mobility, localized-state distribution and deep trapping lifetime in organic semiconductors using impedance spectroscopy are reviewed. The theoretical basis is single-injection space-charge-limited current under small sinusoidal voltage perturbation. Major advantages of impedance spectroscopy are: full automatic measurements and simultaneous measurements of these physical quantities. Information on these physical quantities are essential for the understanding of transport properties in organic semiconductors and for the design of organic devices such as organic light-emitting diodes and organic solar cells using a device simulator. The determination of drift mobility, localized-state distribution and deep trapping lifetime from impedance spectra is demonstrated in a molecularly doped polymer. A molecularly doped polymer is a prototypical organic semiconductor and is a good example for the demonstration of simultaneous determination of these quantities. The methods presented here are applicable to insulating semiconductors and thus to inorganic disordered semiconductors such as hydrogenated amorphous silicon and amorphous oxide semiconductors, as well.

References

  1. 1.
    W. Brutting, C. Adachi, Physics of Organic Semiconductors (Wiley VCH, Weinheim, 2012)Google Scholar
  2. 2.
    R.A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, Cambridge, 1991)Google Scholar
  3. 3.
    S. Baranovski, O. Rubel, in Charge Transport in Disordered Solids with Applications in Electronics, ed. by S. Baranovski (Wiley, Chichester, 2006)Google Scholar
  4. 4.
    H.C.F. Martens, W.F. Pasveer, H.B. Brom, J.N. Huiberts, P.W.M. Blom, Phys. Rev. B 63, 125328 (2001)Google Scholar
  5. 5.
    S.W. Tsang, S.K. So, J.B. Xu, J. Appl. Phys. 99, 013706 (2006)Google Scholar
  6. 6.
    N.D. Nguyen, M. Schmeits, H.P. Loebl, Phys. Rev. B 75, 075307 (2007)Google Scholar
  7. 7.
    T. Okachi, T. Nagase, T. Kobayashi, H. Naito, Jpn. J. Appl. Phys. 47, 8965 (2008)Google Scholar
  8. 8.
    S. Ishihara, T. Okachi, H. Naito, Thin Solid Films 518, 452 (2009)Google Scholar
  9. 9.
    S. Ishihara, H. Hase, T. Okachi, H. Naito, Org. Electron. 12, 1364 (2011)Google Scholar
  10. 10.
    E. Lebedev, Th Dittrich, V. Petrova-Koch, S. Karg, W. Brutting, Appl. Phys. Lett. 71, 2686 (1997)Google Scholar
  11. 11.
    J. Bettenhausen, P. Strohriegl, W. Brutting, H. Tokuhisa, T. Tsutsui, J. Appl. Phys. 82, 4957 (1997)Google Scholar
  12. 12.
    I.H. Campbell, D.L. Smith, C.J. Neef, J.P. Ferraris, Appl. Phys. Lett. 74, 2809 (1999)Google Scholar
  13. 13.
    M. Redecker, D.D.C. Bradley, M. Inbasekaran, E.P. Woo, Appl. Phys. Lett. 74, 1400 (1999)Google Scholar
  14. 14.
    G. Juska, K. Genevicius, K. Arlauskas, R. Osterbacka, H. Stubb, Phys. Rev. B 65, 233208 (2002)Google Scholar
  15. 15.
    J.P.J. Markham, T.D. Anthopoulos, I.D.W. Samuel, G.J. Richards, P.L. Burn, C. Im, H. Bassler, Appl. Phys. Lett. 81, 3266 (2002)Google Scholar
  16. 16.
    F. Laquai, G. Wegner, C. Im, H. Bassler, S. Heun, J. Appl. Phys. 99, 023712 (2006)Google Scholar
  17. 17.
    H.C.F. Martens, J.N. Huiberts, P.W.M. Blom, Appl. Phys. Lett. 77, 1852 (2000)Google Scholar
  18. 18.
    D. Poplavskyy, F. So, J. Appl. Phys. 99, 033707 (2006)Google Scholar
  19. 19.
    M. Schmeits, J. Appl. Phys. 101, 084508 (2007)Google Scholar
  20. 20.
    S. Ishihara, H. Hase, T. Okachi, H. Naito, J. Appl. Phys. 110, 036104 (2011)Google Scholar
  21. 21.
    S. Ishihara, T. Okachi, H. Naito, Thin Solid Films 554, 213 (2014)Google Scholar
  22. 22.
    T. Okachi, T. Nagase, T. Kobayashi, H. Naito, Appl. Phys. Lett. 94, 043301 (2009)Google Scholar
  23. 23.
    H. Hase, T. Okachi, S. Ishihara, T. Nagase, T. Kobayashi, H. Naito, Thin Solid Films 554, 218 (2014)Google Scholar
  24. 24.
    M.C.J.M. Vissenberg, P.W.M. Blom, Synth. Met. 102, 1053 (1999)Google Scholar
  25. 25.
    H. Azuma, K. Asada, T. Kobayashi, H. Naito, Thin Solid Films 509, 182 (2006)Google Scholar
  26. 26.
    A.J. Campbell, D.D.C. Bradley, H. Antoniadis, M. Inbasekaran, W.W. Wu, E.P. Woo, Appl. Phys. Lett. 76, 1734 (2000)Google Scholar
  27. 27.
    S.C. Tse, S.W. Tsang, S.K. So, J. Appl. Phys. 100, 063708 (2006)Google Scholar
  28. 28.
    G. Juska, K. Arlauskas, M. Viliunas, J. Kocka, Phys. Rev. Lett. 84, 4946 (2000)Google Scholar
  29. 29.
    G. Juska, K. Arlauskas, R. Osterbacka, H. Stubb, Synth. Met. 109, 173 (2000)Google Scholar
  30. 30.
    G. Juska, K. Arlauskas, M. Viliunas, K. Genevicius, R. Osterbacka, H. Stubb, Phys. Rev. B 62, R16235 (2000)Google Scholar
  31. 31.
    W. Brutting, H. Riel, T. Beierlein, W. Riess, J. Appl. Phys. 89, 1704 (2001)Google Scholar
  32. 32.
    S.C. Tse, H.H. Fong, S.K. So, J. Appl. Phys. 94, 2033 (2003)Google Scholar
  33. 33.
    N.F. Mott, R.W. Gurney, Electronic Processes in Ionic Crystals, 2nd edn. (Oxford University Press, London, 1940)Google Scholar
  34. 34.
    M.A. Lampert, P. Mark, Current Injection in Solids (Academic, New York, 1970), p. 45Google Scholar
  35. 35.
    P.N. Murgatroyd, J. Phys. D 3, 151 (1970)Google Scholar
  36. 36.
    P.W.M. Blom, M.J.M. de Jong, M.G. van Munster, Phys. Rev. B 55, R656 (1997)Google Scholar
  37. 37.
    T. Yasuda, Y. Yamaguchi, D.C. Zou, T. Tsutsui, Jpn. J. Appl. Phys. 41, 5626 (2002)Google Scholar
  38. 38.
    T.Y. Chu, O.K. Song, Appl. Phys. Lett. 90, 203512 (2007)Google Scholar
  39. 39.
    S.K. So, S.C. Tse, K.L. Tong, J. Disp. Technol. 3, 225 (2007)Google Scholar
  40. 40.
    C.H. Cheung, K.C. Kwok, S.C. Tse, S.K. So, J. Appl. Phys. 103, 093705 (2008)Google Scholar
  41. 41.
    Y. Shen, A.R. Hosseini, M.H. Wong, G.G. Malliaras, ChemPhysChem 5, 16 (2004)Google Scholar
  42. 42.
    Z.B. Wang, M.G. Helander, M.T. Greiner, J. Qiu, Z.H. Lu, Phys. Rev. B 80, 235325 (2009)Google Scholar
  43. 43.
    Z.B. Wang, M.G. Helander, M.T. Greiner, J. Qiu, Z.H. Lu, J. Appl. Phys. 107, 034506 (2010)Google Scholar
  44. 44.
    W. Brutting, S. Berleb, A.G. Muckl, Synth. Met. 122, 99 (2001)Google Scholar
  45. 45.
    W. Brutting, S. Berleb, A.G. Muckl, Org. Electron. 2, 1 (2001)Google Scholar
  46. 46.
    D. Nataliand, M. Sampietro, J. Appl. Phys. 92, 5310 (2002)Google Scholar
  47. 47.
    G. Garcia-Belmonte, A. Munar, E.M. Barea, J. Bisquert, I. Ugarte, R. Pacios, Org. Electron. 9, 847 (2008)Google Scholar
  48. 48.
    E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd edn. (Wiley-Interscience, New York, 2005), p. 91Google Scholar
  49. 49.
    T. Okachi, T. Nagase, T. Kobayashi, H. Naito, Thin Solid Films 517, 1331 (2008)Google Scholar
  50. 50.
    M. Takata, N. Kouda, S. Ishihara, T. Nagase, T. Kobayashi, H. Naito, Jpn. J. Appl. Phys. 53, 02BE02 (2014)Google Scholar
  51. 51.
    J. Shao, G.T. Wright, Solid State-Electron. 3, 291 (1961)Google Scholar
  52. 52.
    G.T. Wright, Solid State-Electron. 9, 1 (1966)Google Scholar
  53. 53.
    K.C. Kao, W. Hwang, Electrical Transport in Solids (Pergamnon Press, Oxford, 1981), p. 368Google Scholar
  54. 54.
    M.A. Lampert, P. Mark, Current Injection in Solids (Academic, New York, 1970), p. 46Google Scholar
  55. 55.
    H.G. Helander, Z.B. Wang, Z.H. Lu, Org. Electron. 12, 1576 (2011)Google Scholar
  56. 56.
    S.W. Tsang, M.W. Denhoff, Y. Tao, Z.H. Lu, Phys. Rev. B 78, 081301 (2008)Google Scholar
  57. 57.
    H.C.F. Martens, H.B. Brom, P.W.M. Blom, Phys. Rev. B 60, R8489 (1999)Google Scholar
  58. 58.
    D. Dascalu, Int. J. Electron. 21, 183 (1966)Google Scholar
  59. 59.
    D. Dascalu, Solid-State Electron. 11, 491 (1968)Google Scholar
  60. 60.
    R. Kassing, Phys. Status Solidi A 28, 107 (1975)Google Scholar
  61. 61.
    T. Nagase, K. Kishimoto, H. Naito, J. Appl. Phys. 86, 5026 (1999)Google Scholar
  62. 62.
    T. Nagase, H. Naito, J. Appl. Phys. 88, 252 (2000)Google Scholar
  63. 63.
    L.L. Chua, J. Zaumseil, J.F. Chang, E.C.W. Ou, P.K.H. Ho, H. Sirringhaus, R.H. Friend, Nature 434, 194 (2005)Google Scholar
  64. 64.
    H.H.P. Gommans, M. Kemerink, R.A.J. Janssen, Phys. Rev. B 72, 235204 (2005)Google Scholar
  65. 65.
    H. Bassler, Phys. Status Solidi B 175, 15 (1993)Google Scholar
  66. 66.
    J.G. Simmons, G.W. Taylor, M.C. Tam, Phys. Rev. B 7, 3714 (1973)Google Scholar
  67. 67.
    P. Stallinga, H.L. Gomes, H. Rost, A.B. Holmes, M.G. Harrison, R.H. Friend, F. Biscarini, C. Taliani, G.W. Jones, D.M. Taylor, Phys. B 273, 923 (1999)Google Scholar
  68. 68.
    M. Nakahara, M. Minagawa, T. Oyamada, T. Tadokoro, H. Sasabe, C. Adachi, Jpn. J. Appl. Phys. 46, L636 (2007)Google Scholar
  69. 69.
    K. Kawano, C. Adachi, Adv. Funct. Mater. 19, 3934 (2009)Google Scholar
  70. 70.
    P. Yu, A. Migan-Dubois, J. Alvarez, A. Darga, V. Vissac, D. Mencaraglia, Y. Zhou, M. Krueger, J. Non-Cryst, Solids 358, 2537 (2012)Google Scholar
  71. 71.
    R. Schmechel, H. von Seggern, Phys. Stat. Sol. A 201, 1215 (2004)Google Scholar
  72. 72.
    J. Schafferhans, A. Baumann, C. Deibel, V. Dyakonov, Appl. Phys. Lett. 93, 093303 (2008)Google Scholar
  73. 73.
    J. Schafferhans, A. Baumann, A. Wagenpfahl, C. Deibel, V. Dyakonov, Org. Electron. 11, 1693 (2010)Google Scholar
  74. 74.
    J. Schafferhans, C. Deibel, V. Dyakonov, Adv. Energy Mater. 1, 655 (2011)Google Scholar
  75. 75.
    S. Baranovski, O. Rubel, in Charge Transport in Disordered Solids with Applications in Electronics, ed. by S. Baranovski (Wiley, Chichester, 2006), p. 83Google Scholar
  76. 76.
    D.V. Lang, J. Appl. Phys. 45, 3023 (1974)Google Scholar
  77. 77.
    D.V. Lang, J.D. Cohen, J.P. Harbison, Phys. Rev. B 25, 5285 (1982)Google Scholar
  78. 78.
    J.D. Cohen, D.V. Lang, Phys. Rev. B 25, 5321 (1982)Google Scholar
  79. 79.
    A.J. Campbell, D.D.C. Bradley, E. Werner, W. Brutting, Synth. Met. 111, 273 (2000)Google Scholar
  80. 80.
    Y.S. Yang, S.H. Kim, J.I. Lee, H.Y. Chu, L.M. Do, H. Lee, J. Oh, T. Zyung, M.K. Ryu, M.S. Jang, Appl. Phys. Lett. 80, 1595 (2002)Google Scholar
  81. 81.
    P. Stallinga, H.L. Gomes, H. Rost, A.B. Holmes, M.G. Harrison, R.H. Friend, Synth. Met. 111, 535 (2000)Google Scholar
  82. 82.
    T.P. Nguyen, Phys. Status Solidi A 205, 162 (2008)Google Scholar
  83. 83.
    S. Neugebauer, J. Rauh, C. Deibel, V. Dyakonov, Appl. Phys. Lett. 100, 263304 (2012)Google Scholar
  84. 84.
    H. Naito, J. Ding, M. Okuda, Appl. Phys. Lett. 64, 1830 (1994)Google Scholar
  85. 85.
    H. Naito, M. Okuda, J. Appl. Phys. 77, 3541 (1995)Google Scholar
  86. 86.
    H. Naito, T. Nagase, T. Ishii, M. Okuda, T. Kawaguchi, S. Maruno, J. Non-Cryst. Solids 198, 363 (1996)Google Scholar
  87. 87.
    J.G. Simmons, M.C. Tam, Phys. Rev. B 7, 3706 (1973)Google Scholar
  88. 88.
    J. Orenstein, M. Kastner, Phys. Rev. Lett. 46, 1421 (1981)Google Scholar
  89. 89.
    G.F. Seynhaeve, R.P. Barclay, G.J. Adriaenssens, J.M. Marshall, Phys. Rev. B 39, 10196 (1989)Google Scholar
  90. 90.
    H.Z. Song, G.J. Adriaenssens, E.V. Emelianova, V.I. Arkhipov, Phys. Rev. B 59, 10607 (1999)Google Scholar
  91. 91.
    F.T. Reis, D. Mencaraglia, S.O. Saad, I. Seguy, M. Oukachmih, P. Jolinat, P. Destruel, Synth. Met. 138, 33 (2003)Google Scholar
  92. 92.
    P.P. Boix, J. Ajuria, I. Etxebarria, R. Pacios, G. Garcia-Belmonte, Thin Solid Films 520, 2265 (2012)Google Scholar
  93. 93.
    J.A. Carr, S. Chaudhary, J. Appl. Phys. 114, 064509 (2013)Google Scholar
  94. 94.
    A. Sharma, S. Yadav, P. Kumar, S.R. Chaudhuri, S. Ghosh, Appl. Phys. Lett. 102, 143301 (2013)Google Scholar
  95. 95.
    T. Walter, R. Herberholz, C. Muller, H.W. Schock, J. Appl. Phys. 80, 4411 (1996)Google Scholar
  96. 96.
    G. Garcia-Belmonte, P.P. Boix, J. Bisquert, M. Sessolo, H.J. Bolink, Sol. Energy Mater. Sol. Cells 94, 366 (2010)Google Scholar
  97. 97.
    G. Garcia-Belmonte, P.P. Boix, J. Bisquert, M. Lenes, H.J. Bolink, A.L. Rosa, S. Filippone, N. Martin, J. Phys. Chem. Lett. 1, 2566 (2010)Google Scholar
  98. 98.
    V.I. Arkhipov, H. Bassler, Philos. Mag. B 68, 425 (1993)Google Scholar
  99. 99.
    B. Hartentein, H. Bassler, A. Jakobs, K.W. Kehr, Phys. Rev. B 54, 8574 (1996)Google Scholar
  100. 100.
    L.B. Shein, Phys. Rev. B 15, 1024 (1977)Google Scholar
  101. 101.
    R.A. Street, J. Zesch, M.J. Thompson, Appl. Phys. Lett. 43, 672 (1983)Google Scholar
  102. 102.
    S.O. Kasap, B. Polischuk, D. Dodds, Rev. Sci. Instrum. 61, 2080 (1990)Google Scholar
  103. 103.
    S.O. Kasap, V. Aiyah, B. Polischuk, A. Bhattacharyya, Z. Liang, Phys. Rev. B 43, 6691 (1991)Google Scholar
  104. 104.
    A. Nemeth-Buhin, C. Juhasz, J. Phys.: Condens. Matter 9, 4831 (1997)Google Scholar
  105. 105.
    S. Komuro, Y. Aoyagi, Y. Segawa, S. Namba, A. Masuyama, H. Okamoto, Y. Hamakawa, Appl. Phys. Lett. 43, 968 (1983)Google Scholar
  106. 106.
    M.A. Lampert, P. Mark, Current Injection in Solids (Academic, New York, 1970), pp. 150–152Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Kenichiro Takagi
    • 1
  • Soichiro Abe
    • 1
  • Takashi Nagase
    • 1
  • Takashi Kobayashi
    • 1
  • Hiroyoshi Naito
    • 1
  1. 1.Department of Physics and ElectronicsOsaka Prefecture UniversitySakaiJapan

Personalised recommendations