Advertisement

Nanosheets-based ZnO–NiO microspheres for lithium-ion batteries

  • Tingting Cao
  • Dong Fang
  • Lei Liu
  • Zhiping Luo
  • Qing Wang
  • Lijie Dong
  • Chuanxi Xiong
Article

Abstract

Nanosheets-based ZnO–NiO microspheres were synthesized by a simple hydrothermal route combined with subsequent heat treatment at moderate temperature. The physical properties of the resulting samples were characterized by scanning electron microscopy, transmission electron microscope, and X-ray diffraction, respectively. The results show that composite materials, nanosheets-based ZnO–NiO microspheres have been successfully synthesized. For comparison, nanosheets-based ZnO or NiO microspheres were also prepared in the similar method. The nanosheets-based ZnO–NiO microspheres obtained after annealing at 500 °C showed a remarkable composite effect, delivering a higher discharge capacity (733 mAh g−1 at 100 mA g−1 after 50 cycles) and excellent cycling stability in comparison to those of single ZnO or NiO nanosheets. These findings make ZnO–NiO microspheres promising anodes for lithium-ion batteries. The results of this study also offer possibilities of improving the lithium storage capacity of transition metal oxides by controlling both architecture and composition.

Keywords

SnO2 Anode Material Solid Electrolyte Interphase High Discharge Capacity Poor Electrical Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Natural Science Foundation of China (Nos. 51201117, 51104121), the China Postdoctoral Science Foundation (Nos. 2012M521481, 2013M540610), and the Scholarship Award for Excellent Doctoral Student granted by Ministry of Education of China (No. 1343-71134001002). Professor Xiaoqing Liu, Wuhan University of Technology, is acknowledged for help in the transmission electron microscopy JEOL 2100F testing.

References

  1. 1.
    C.F. Zhang, M. Quince, Z.X. Chen, Z.P. Guo, H.K. Liu, J. Solid State Electrochem. 15, 2645 (2011)CrossRefGoogle Scholar
  2. 2.
    X.Y. Fan, X.Y. Shi, J. Wang, J.J. Wang, L. Xu, L. Gou, D.L. Li, J. Solid State Electrochem. 17, 201 (2013)CrossRefGoogle Scholar
  3. 3.
    J.M. Tarascon, M. Armand, Nature 414, 359 (2001)CrossRefGoogle Scholar
  4. 4.
    N. Williard, B. Sood, M. Osterman, M. Pecht, J. Mater. Sci.: Mater. Electron. 22, 1616 (2011)Google Scholar
  5. 5.
    H. Liu, J. Huang, C. Xiang, J. Liu, X. Li, J. Mater. Sci.: Mater. Electron. 24, 3640 (2013)Google Scholar
  6. 6.
    H.B. Wu, J.S. Chen, H.H. Hng, X.W. Lou, Nanoscale 4, 2526 (2012)CrossRefGoogle Scholar
  7. 7.
    Z.G. Yang, D. Choi, S. Kerisit, D.H. Rosso, J. Wang, G. Zhang, Power Sources 192, 588 (2009)CrossRefGoogle Scholar
  8. 8.
    M.V. Reddy, G.V.S. Rao, B.V.R. Chowdari, Chem. Rev. 113, 5364 (2013)CrossRefGoogle Scholar
  9. 9.
    S.H. Choi, J.S. Kim, Y.S. Yoon, Electrochim. Acta 50, 547 (2004)CrossRefGoogle Scholar
  10. 10.
    J.X. Zhu, Z.P. Guo, P. Zhang, G.D. Du, R. Zeng, Z.C. Chen, S. Li, H.K. Liu, J. Mater. Chem. 19, 8360 (2009)CrossRefGoogle Scholar
  11. 11.
    X. Li, D. Li, L. Qiao, X. Wang, X. Sun, P. Wang, D. He, J. Mater. Chem. 22, 9189 (2012)CrossRefGoogle Scholar
  12. 12.
    Z. Wu, L. Qin, Q. Pan, J Alloys Compd. 509, 9207 (2011)CrossRefGoogle Scholar
  13. 13.
    S.M. Paek, J.H. Kang, H. Jung, S.J. Hwang, J.H. Choy, Chem. Commun. 48, 7536 (2009)CrossRefGoogle Scholar
  14. 14.
    J. Fang, Y.F. Yuan, L.K. Wang, H.L. Ni, H.L. Zhu, J.L. Yang, J.S. Gui, Y.B. Chen, S.Y. Guo, Electrochim. Acta 112, 364 (2013)CrossRefGoogle Scholar
  15. 15.
    J.S. Chen, C.M. Li, W.W. Zhou, Q.Y. Yan, L.A. Archer, X.W. Lou, Nanoscale 1, 280 (2009)CrossRefGoogle Scholar
  16. 16.
    L. Shi, Y. Xu, S. Hark, Y. Liu, S. Wang, L.M. Peng, W. Wong, Q. Li, Nano Lett. 7, 3559 (2007)CrossRefGoogle Scholar
  17. 17.
    A.K. Mondal, D.W. Su, Y. Wang, S.Q. Chen, G.X. Wang, Chem. Asian J. 8, 2828 (2013)CrossRefGoogle Scholar
  18. 18.
    X.H. Huang, X.H. Xia, Y.F. Yuan, F. Zhou, Electrochim. Acta 56, 4960 (2011)CrossRefGoogle Scholar
  19. 19.
    S.A. Needham, G.X. Wang, H.K. Liu, J. Power Sources 159, 254 (2006)CrossRefGoogle Scholar
  20. 20.
    H. Wang, Q. Pan, Y. Cheng, J. Zhao, G. Yin, Electrochim. Acta 54, 2851 (2009)CrossRefGoogle Scholar
  21. 21.
    L. Liu, Y. Li, S.M. Yuan, M. Ge, M.M. Ren, C.S. Sun, Z. Zhou, J. Phys. Chem. C 114, 251 (2010)CrossRefGoogle Scholar
  22. 22.
    G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797 (2012)CrossRefGoogle Scholar
  23. 23.
    L. Qiao, X.Y. Wang, X.L. Sun, X.W. Li, Y.X. Zheng, D.Y. He, Nanoscale 5, 3037 (2013)CrossRefGoogle Scholar
  24. 24.
    B. Liu, J. Zhang, X. Wang, G. Chen, D. Chen, C. Zhou, G. Shen, Nano Lett. 12, 3005 (2012)CrossRefGoogle Scholar
  25. 25.
    C. Wang, D.L. Wang, Q.M. Wang, H.J. Chen, J. Power Sources 195, 7432 (2010)CrossRefGoogle Scholar
  26. 26.
    J.S. Do, C.H. Weng, J. Power Sources 146, 482 (2005)CrossRefGoogle Scholar
  27. 27.
    Q.M. Pan, L.M. Qin, J. Liu, H.B. Wang, Electrochim. Acta 20, 5780 (2010)CrossRefGoogle Scholar
  28. 28.
    Q.F. Zhang, E. Uchaker, S.L. Candelaria, G.Z. Cao, Chem. Soc. Rev. 42, 3127 (2013)CrossRefGoogle Scholar
  29. 29.
    G.H. Yu, X. Xie, L.J. Pan, Z.N. Bao, Y. Cui, Y. Nano Energy 2, 213 (2013)CrossRefGoogle Scholar
  30. 30.
    L.J. Lauhon, M.S. Gudiksen, D. Wang, C.M. Lieber, Nature 420, 57 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringWuhan University of TechnologyWuhanChina
  2. 2.College of Material Science and EngineeringWuhan Textile UniversityWuhanChina
  3. 3.Microscopy and Imaging Center and Materials Science and Engineering ProgramTexas A&M UniversityCollege StationUSA

Personalised recommendations