SnS-based thin film solar cells: perspectives over the last 25 years

  • Jacob A. Andrade-Arvizu
  • Maykel Courel-PiedrahitaEmail author
  • Osvaldo Vigil-Galán


New types of thin film solar cells made from earth-abundant, non-toxic materials and with adequate physical properties such as band-gap energy, large absorption coefficient and p-type conductivity are needed in order to replace the current technology based on CuInGaSe2 and CdTe absorber materials, which contain scarce and toxic elements. One promising candidate absorber material is tin monosulfide (SnS). The constituent elements of the SnS film are abundant in the earth’s crust, and non-toxic. If this compound is used as the absorber layer in solar cells, high efficient devices should be fabricated with relative low cost technologies. Despite these properties, low efficiency SnS-based solar cells have been reported up to now. In this work, we present a review about the state of the art of SnS films and devices. Finally, an analysis about different factors that are limiting high efficiency solar cells is presented.


Solar Cell Thin Film Solar Cell SnS2 Solar Cell Efficiency Solar Cell Performance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partially supported by CeMIE-Sol-207450/P26. J.A. Andrade-Arvizu thanks Raúl Andrade & Carmen Arvizu for everything. J.A. Andrade-Arvizu and M. Courel thank Conacyt and BEIFI fellowship supports. O. Vigil-Galán acknowledges support from COFAA and EDI of IPN.


  1. 1.
    O.V. Galan, M. Courel, J.A. Andrade-Arvizu, Y. Sanchez, M. Espindola-Rodriguez, E. Saucedo, D. Seuret-Jimenez, M. Titsworth, J. Mater. Sci. Mater. Electron. (2014). doi: 10.1007/s10854-014-2196-4 Google Scholar
  2. 2.
    M.A. Green, Thin-film solar cells: review of materials, technologies and commercial status. J. Mater. Sci. Mater. Electron. 18, S15–S19 (2007)Google Scholar
  3. 3.
    D. Ginley, M.A. Green, R. Collins, Solar energy conversion towards 1 terawatt. International energy agency: energy technology perspectives 2008—scenarios & strategies to 2050. MRS Bull. 33, 355–372 (2008)Google Scholar
  4. 4.
    A. Tanaka, M. Hirata, M. Shiratani, K. Koga, Y. Kiyohara, J. Occup. Health 54(3), 187–195 (2012)Google Scholar
  5. 5.
    T. Sorahan, N.A. Esmen, Occup. Environ. Med. 61, 108–116 (2004)Google Scholar
  6. 6.
    T. Sorahan, Occup. Med. 59, 264–266 (2009)Google Scholar
  7. 7.
    T. Nawrot, M. Plusquin, J. Hogervorst, H.A. Roels, H. Celis, L. Thijs, J. Vangronsveld, E. Van Hecke, J.A. Staessen, Lancet Oncol. 7(2), 119–126 (2006)Google Scholar
  8. 8.
    T. Markvart, L. Castañer, Practical Handbook of Photovoltaics: Fundamental and Applications (Elsevier, Oxford, 2003), pp. 565–585Google Scholar
  9. 9.
    R.H. Bube, Photovoltaic Materials, Series on Properties of Semiconductor Materials, vol. 1 (Imperial College Press, London, 1998)Google Scholar
  10. 10.
    B. Pan, M. Wei, W. Liu, G. Jiang, C. Zhu, J. Mater. Sci. Mater. Electron. 25, 3344–3352 (2014)Google Scholar
  11. 11.
    Y. Li, T. Yuan, L. Jiang, F. Liu, Y. Liu, Y. Lai, J. Mater. Sci. Mater. Electron. 26, 204–210 (2015)Google Scholar
  12. 12.
    J. Xu, Z. Cao, Y. Yang, Z. Xie, J. Mater. Sci. Mater. Electron. (2014). doi: 10.1007/s10854-014-2456-3 Google Scholar
  13. 13.
    E. Gu, C. Yan, F. Liu, Y. Liu, Z. Su, K. Zhang, Z. Chen, J. Li, Y. Liu, J. Mater. Sci. Mater. Electron. 26, 1932–1939 (2015)Google Scholar
  14. 14.
    W. Wang, H. Shen, H. Yao, J. Li, J. Jiao, J. Mater. Sci. Mater. Electron. 26(3), 1449–1454 (2015)Google Scholar
  15. 15.
    J.M. Chamberlain, M. Merdan, J. Phys. C Solid State Phys. 10, L571 (1977)Google Scholar
  16. 16.
    J.Y. Kim, S.M. George, J. Phys. Chem. C 114(41), 17597–17603 (2010)Google Scholar
  17. 17.
    R. Herzenberg, Kolbeckin, Sn2S3, ein neues Zinnmineral. CentralBlatt fuer Mineralogie A, 345–355 (1932)Google Scholar
  18. 18.
    W. Albers, C. Haas, H.J. Vink, J.D. Wasscher, J. Appl. Phys. 32(10), 2220–2225 (1961)Google Scholar
  19. 19.
    S.A. Kissin, D.R. Owens, Can. Mineral. 17(1), 125–135 (1979)Google Scholar
  20. 20.
    H. Dittrich, A. Bieniok, U. Brendel, M. Grodzicki, D. Topa, Thin Solid Films 515(15), 5745–5750 (2007)Google Scholar
  21. 21.
    T. Jiang, G.A. Ozin, J. Mater. Chem. 8, 1099–1108 (1998)Google Scholar
  22. 22.
    J.J. Loferski, J. Appl. Phys. 27(7), 777–784 (1956)Google Scholar
  23. 23.
    M. Khadraoui, N. Benramdane, C. Mathieu, A. Bouzidi, R. Miloua, Z. Kebbab, K. Sahraoui, R. Desfeux, Solid State Commun. 150(5–6), 297–300 (2010)Google Scholar
  24. 24.
    M. Devika, K.T. Ramakrishna Reddy, N. Koteeswara Reddy, K. Ramesh, R. Ganesan, E.S.R. Gopal, K.R. Gunasekhar, J. Appl. Phys. 100, 023518 (2006)Google Scholar
  25. 25.
    H. Noguchi, A. Setiyadi, H. Tanamura, T. Nagatomo, O. Omoto, Sol. Energy Mater. Sol. Cells 35(11), 325–331 (1994)Google Scholar
  26. 26.
    N. Sato, M. Ichimura, E. Arai, Y. Yamazaki, Characterization of electrical properties of SnS thin films prepared by the electrochemical deposition method, in Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, volume A (2003), p. 38Google Scholar
  27. 27.
    K. Kourtakis, J. DiCarlo, R. Kershaw, K. Dwight, A. Wold, J. Solid State Chem. 76(1), 186–191 (1988)Google Scholar
  28. 28.
    T. Shibata, Y. Muranushi, T. Miura, T. Kishi, J. Mater. Sci. 26(18), 5107–5112 (1991)Google Scholar
  29. 29.
    H. Ben Haj Salah, H. Bouzouita, B. Rezig, Thin Solid Films 480–481, 439–442 (2005)Google Scholar
  30. 30.
    R.W.G. Wyckoff, Cryst. Struct. 1, 85–237 (1963)Google Scholar
  31. 31.
    T.H. Sajeesh, Spray Pyrolysed Tin Chalcogenide Thin Films: Optimization of Optoelectronic Properties of SnS for Possible Photovoltaic Application as an Absorber Layer. Ph. D. thesis, Cochin University of Science and Technology, Kerala, IndiaGoogle Scholar
  32. 32.
    W. Tremel, R. Hoffmann, Inorg. Chem. 26, 118–127 (1987)Google Scholar
  33. 33.
    H. Wiedemeier, H. Georg von Schnering, Zeitschrift fÛr Kristallographie 148, 295–303 (1978)Google Scholar
  34. 34.
    O. Madelung, Semiconductors: Data Handbook, 3rd edn. (Springer, Berlin, 2004), pp. 1981–1989Google Scholar
  35. 35.
    M. Calixto-Rodriguez, H. Martinez, A. Sanchez-Juarez, J. Campos-Alvarez, A. Tiburcio-Silver, M.E. Calixto, Thin Solid Films 517, 2497–2499 (2009)Google Scholar
  36. 36.
    S. Lopez, A. Ortiz, Semicond. Sci. Technol. 9, 2130–2133 (1994)Google Scholar
  37. 37.
    T.H. Sajeesh, A.R. Warrier, C.S. Kartha, K.P. Vijayakumar, Thin Solid Films 518, 4370–4374 (2010)Google Scholar
  38. 38.
    K. Santhosh Kumar, C. Manoharan, S. Dhanapandian, A. Gowri Manohari, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 115, 840–844 (2013)Google Scholar
  39. 39.
    D. David Avellaneda, M.T.S. Nair, P.K. Nair, J. Electrochem. Soc. 155(7), D517–D525 (2008)Google Scholar
  40. 40.
    S. Chowdhury. Synthesis and Characterization of SnS Thin Films Using Successive Ionic Layer Adsorption and Reaction (SILAR) Method and Fabrication of CdS/SnS Heterostructured Devices. Master of Technology in Energy and Technology Thesis, School of Energy Studies, Jadavpur UniversityGoogle Scholar
  41. 41.
    M. Devika, N. Koteeswara Reddy, K. Ramesh, K.R. Gunasekhar, E.S.R. Gopal, K.T. Ramakrishna Reddy, Semicond. Sci. Technol. 21, 1125–1131 (2006)Google Scholar
  42. 42.
    A.A. Shama, H.M. Zeyada, Opt. Mater. 24(3), 555–561 (2003)Google Scholar
  43. 43.
    M.M. El-Nahass, H.M. Zeyada, M.S. Aziz, N.A. El-Ghamaz, Opt. Mater. 20(3), 159–170 (2002)Google Scholar
  44. 44.
    P.P. Hankare, A.V. Jadhav, P.A. Chate, K.C. Rathod, P.A. Chavan, S.A. Ingole, J. Alloy. Compd. 463(1), 581–584 (2008)Google Scholar
  45. 45.
    E. Turan, M. Kul, A. Aybek, M. Zor, E. Turan, M. Kul, A. Aybek, M. Zor, J. Phys. D Appl. Phys. 42, 245408 (2009)Google Scholar
  46. 46.
    A. Akkari, C. Guasch, N. Kamoun-Turki, J. Alloy. Compd. 490(1–2), 180–183 (2010)Google Scholar
  47. 47.
    E. Guneri, F. Gode, C. Ulutas, F. Kirmizigul, G. Altindemir, C. Gumus, Chalcogenide Lett. 7(12), 685–694 (2010)Google Scholar
  48. 48.
    E. Guneri, C. Ulutas, F. Kirmizigul, G. Altindemir, F. Gode, C. Gumus, Appl. Surf. Sci. 257, 1189–1195 (2010)Google Scholar
  49. 49.
    A. Kassim, H.S. Min, A. Shariff, M.J. Haron, Res. J. Chem. Environ. 15(3), 45–48 (2011)Google Scholar
  50. 50.
    M. Jayalakshmi, M. Mohan Rao, B.M. Choudary, Electrochem. Commun. 6(11), 1119–1122 (2004)Google Scholar
  51. 51.
    N. Sato, M. Ichimura, E. Arai, Y. Yamazaki, Sol. Energy Mater. Sol. Cells 85, 153 (2005)Google Scholar
  52. 52.
    Tin sulfide (SnS) Debye temperature, heat capacity, density, melting point. Non-Tetrahedrally Bonded Elements and Binary Compounds. Landolt-Börnstein-Group III Condensed Matter 41C, 1–2 (1998)Google Scholar
  53. 53.
    M. Sharon, K. Basavaswaran, Sol. Cells 25(2), 97–107 (1988)Google Scholar
  54. 54.
    W. Shockley, H.J. Queisser, J. Appl. Phys. 32, 510 (1961)Google Scholar
  55. 55.
    J. Vidal, S. Lany, M. d’Avezac, A. Zunger, A. Zakutayev, J. Francis, J. Tate, Appl. Phys. Lett. 100, 032104 (2012)Google Scholar
  56. 56.
    G.A. Tritsaris, B.D. Malone, E. Kaxiras, J. Appl. Phys. 113, 233507 (2013)Google Scholar
  57. 57.
    W. Hofmann, Ergebnisse der Strukturbestimmung komplexer Z. Kristallogr. 92, 161–185 (1935)Google Scholar
  58. 58.
    M. Gashimzade, E.I. Guseinov, Inorg. Mater. 35, 328 (1999)Google Scholar
  59. 59.
    M. Gashimzade, D.A. Guseinova, Inorg. Mater. 32, 955 (1996)Google Scholar
  60. 60.
    A.R.H.F. Ettema, R.A. de Groot, C. Haas, T.S. Turner, Phys. Rev. B 46, 7363 (1992)Google Scholar
  61. 61.
    K.T.R. Reddy, P.P. Reddy, Mater. Lett. 56(1–2), 108–111 (2002)Google Scholar
  62. 62.
    M. Leach, K.T.R. Reddy, M.V. Reddy, J.K. Tan, D.Y. Jang, R.W. Miles, Energy Proc. 15, 371–378 (2012)Google Scholar
  63. 63.
    K.T.R. Reddy, N.K. Reddy, R.W. Miles, Sol. Energy Mater. Sol. Cells 90(18–19), 3041–3046 (2006)Google Scholar
  64. 64.
    G. Gordillo, M. Botero, J.S. Oyola, Microelectron. J. 39, 1351–1353 (2008)Google Scholar
  65. 65.
    P. Sinsermsuksakul, J. Heo, W. Noh, A.S. Hock, R.G. Gordon, Adv. Energy Mater. 1, 1116–1125 (2011)Google Scholar
  66. 66.
    C. Cifuentes, M. Botero, E. Romero, C. Calderon, G. Gordillo, Braz. J. Phys. 36, 3B (2006)Google Scholar
  67. 67.
    N.K. Reddy, K. Ramesh, R. Ganesan, K.T.R. Reddy, K.R. Gunasekhar, E.S.R. Gopal, Appl. Phys. A 83, 133–138 (2006)Google Scholar
  68. 68.
    F.G. Yanuar, F. Guastavino, C. Llinares, K. Djessas, G. Masse, J. Mater. Sci. Lett. 19, 2135–2137 (2000)Google Scholar
  69. 69.
    F.G. Yanuar, G. El-Haj Moussa, F. Guastavino, C. Llinares, in IEEE (2001), 0-7803-7117-8Google Scholar
  70. 70.
    X.P. Zhan, C.W. Shi, X.J. Shen, Min Yao, Y.R. Zhang, Adv. Mater. Res. 590, 148–152 (2012)Google Scholar
  71. 71.
    S.A. Bashkirov, V.F. Gremenok, V.A. Ivanov, V.V. Lazenka, K. Bentec, Thin Solid Films 520, 5807–5810 (2012)Google Scholar
  72. 72.
    V.F. Gremenok, V.A. Ivanov, H. Izadneshan, V.V. Lazenka, A. Bakouie, Nanosyst. Phys. Chem. Math. 5(6), 789–795 (2014)Google Scholar
  73. 73.
    W. Wang, K.K. Leung, W.K. Fong, S.F. Wang, Y.Y. Hui, S.P. Lau, Z. Chen, L.J. Shi, C.B. Cao, C. Surya, J. Appl. Phys. 111(9), 093520 (2012)Google Scholar
  74. 74.
    S.S. Hegde, A.G. Kunjomana, M. Prashantha, C. Kumar, K. Ramesh, Thin Solid Films 545, 543–547 (2013)Google Scholar
  75. 75.
    O.E. Ogah, G. Zoppi, I. Forbes, R.W. Miles, Thin Solid Films 517, 2485–2488 (2009)Google Scholar
  76. 76.
    R.W. Miles, O.E. Ogah, G. Zoppi, I. Forbes, Thin Solid Films 517, 4702–4705 (2009)Google Scholar
  77. 77.
    B. Ghosh, R. Bhattacharje, P. Banerjee, S. Das, Appl. Surf. Sci. 257, 3670–3676 (2011)Google Scholar
  78. 78.
    P.K. Nair, M.T.S. Nair, J. Phys. D Appl. Phys. 24(1), 83–87 (1991)Google Scholar
  79. 79.
    X. Jiaxiong, Y. Yang, Z. Xie, J. Mater. Sci. Mater. Electron. 25(7), 3028–3033 (2014)Google Scholar
  80. 80.
    B. Ghosh, M. Das, P. Banerjee, S. Das, Energy Mater. Sol. Cells 92, 1099–1104 (2008)Google Scholar
  81. 81.
    N. Revathi, S. Bereznev, J. Iljina, M. Safonova, E. Mellikov, O. Volobujeva, J. Mater. Sci. Mater. Electron. 24, 4739–4744 (2013)Google Scholar
  82. 82.
    B. Subramanian, C. Sanjeeveiraja, M. Jayachandran, Sol. Energy Mater. Sol. Cells 79(1), 57 (2003)Google Scholar
  83. 83.
    P. Pramanik, P.K. Basu, S. Biswas, Thin Solid Films 150(2–3), 269–276 (1987)Google Scholar
  84. 84.
    M. Ristov, G. Sinadinovski, I. Grozdanov, M. Mitreski, Thin Sold films 173(1), 53–58 (1989)Google Scholar
  85. 85.
    R.D. Engelken, S. Ali, L.N. Chang, C. Brinkley, K. Turner, C. Hester, Mater. Lett. 10(6), 264–274 (1990)Google Scholar
  86. 86.
    C.D. Lokhande, Mater. Chem. Phys. 27(1), 1–43 (1991)Google Scholar
  87. 87.
    M.T.S. Nair, P.K. Nair, Semicond. Sci. Technol. 6, 132–134 (1991)Google Scholar
  88. 88.
    P.K. Nair, M.T.S. Nair, V.M. Garcia, O.L. Arenas, Y. Pena, A. Castillo, I.T. Ayala, O. Gomezdaza, A. Sanchez, J. Campos, H. Hu, R. Suarez, M.E. Rincon, Sol. Energy Mater. Sol. Cells 52, 313–344 (1998)Google Scholar
  89. 89.
    A. Tanusevski, Semicond. Sci. Technol. 18, 501 (2003)Google Scholar
  90. 90.
    T.-m. Lei, Y. H, H. Li, L. Li, X. Feng, S. Liu, J. Synth. Cryst. 34, 484–486 (2005)Google Scholar
  91. 91.
    D. Avellaneda, G. Delgado, M. Nair, P. Nair, Thin Solid Films 515, 5771–5776 (2007)Google Scholar
  92. 92.
    A. Akkari, N.T. Ben, N. Kamoun, Fundamental and applied spectroscopy, in AIP Conference Proceedings, vol. 935, pp. 37–42 (2007)Google Scholar
  93. 93.
    M. Safonova, P.K. Nair, E. Mellikov, A.R. Garcia, K. Kerm, N. Revathi, T. Romann, V. Mikli, O. Volobujeva, J. Mater. Sci. Mater. Electron. 25, 3160–3165 (2014)Google Scholar
  94. 94.
    C. Gao, H. Shen, L. Sun, Appl. Surf. Sci. 257, 6750–6755 (2011)Google Scholar
  95. 95.
    L.K. Khel, S. Khan, M.I. Zaman, J. Chem. Soc. Pak. 27, 24–28 (2005)Google Scholar
  96. 96.
    P. Sinsermsuksakul, K. Hartman, S.B. Kim, J. Heo, L. Sun, H.H. Park, R. Chakraborty, T. Buonassisi, R.G. Gordon, Appl. Phys. Lett. 102, 053901 (2013)Google Scholar
  97. 97.
    L.S. Price, I.P. Parkin, T.G. Hillbert, K.C. Molloy, Chem. Vapor. Depos. 4(6), 222 (1998)Google Scholar
  98. 98.
    G. Barone, T.G. Hibbert, M.F. Mahon, K.C. Molly, L.S. Price, I.P. Parkin, A.M.E. Hardy, M.N. Field, J. Mater. Chem. 11(1), 464–468 (2001)Google Scholar
  99. 99.
    A.S. Juarez, A. Ortiz, Semicond. Sci. Technol. 17(9), 931–937 (2002)Google Scholar
  100. 100.
    L. Price, I.P. Parkin, A.M.E. Hardy, R.J.H. Clark, Chem. Mater. 11, 1792–1799 (1999)Google Scholar
  101. 101.
    A. Tanuševski, D. Poelman, Sol. Energy Mater. Sol. Cells 80, 297–303 (2003)Google Scholar
  102. 102.
    K. Mishra, K. Rajeshwar, A. Weiss, M. Murley, R.D. Engelken, M. Slayton, H.E. McCloud, Electrochem. Soc. 136, 1915 (1989)Google Scholar
  103. 103.
    S.A. Jodgudri, U.K. Mohite, K.M. Gadave, C.D. Lokhande, Indian J. Pure Appl. Phys. 32, 772 (1994)Google Scholar
  104. 104.
    Z. Zainal, M.Z. Hussein, A. Ghazali, Sol. Energy Mater. Sol. Cells 40, 347–357 (1996)Google Scholar
  105. 105.
    A. Ghazali, Z. Zainal, M.Z. Hussein, A. Kassim, Sol. Energy Mater. Sol. Cells 55, 237–249 (1998)Google Scholar
  106. 106.
    M. Ichimura, K. Takeuchi, Y. Ono, E. Arai, in Proceeding of the European Materials Research Society Spring Meeting, Strasbourg, 1999, Symposium O-PS/22 (1999)Google Scholar
  107. 107.
    M. Ichimura, K. Takeuchi, Y. Ono, E. Arai, Thin Solid Films 361–362, 98–101 (2000)Google Scholar
  108. 108.
    M. Ristov, G. Sinadovski, M. Mitreski, M. Ristova, Sol. Energy Mater. Sol. Cells 69(1), 17–24 (2001)Google Scholar
  109. 109.
    K. Takeuchi, M. Ichimura, E. Arai, Y. Yamazaki, Sol. Energy Mater. Sol. Cells 75, 427–432 (2003)Google Scholar
  110. 110.
    Z. Zainal, S. Nagalingam, T.M. Hua, J. Mater. Sci. Mater. Electron. 16, 281–285 (2005)Google Scholar
  111. 111.
    K.Y. Jain, H. Sharma, K.N. Sood, Rashmi, S.T. Lakshmikumar, in Conference Record of the IEEE Photovoltaic Specialists Conference Florida, vol. 468 (2005)Google Scholar
  112. 112.
    S. Cheng, Y. Chen, C. Huang, G. Chen, Thin Solid Films 500, 96–100 (2006)Google Scholar
  113. 113.
    Y. Li, J.P. Tu, H.M. Wu, Y.F. Yuan, D.Q. Shi, Mater. Sci. Eng. B 128, 75–79 (2006)Google Scholar
  114. 114.
    S. Cheng, Y. Chen, Y. He, G. Chen, Mater. Lett. 61(6), 1408–1412 (2007)Google Scholar
  115. 115.
    M. Gunasekaran, M. Ichimura, Sol. Energy Mater. Sol. Cells 91, 774 (2007)Google Scholar
  116. 116.
    J.R.S. Brownson, C. Georges, C. Lévy-Clement, Chem. Mater. 18(26), 6397–6402 (2006)Google Scholar
  117. 117.
    N.R. Mathews, Semicond. Sci. Technol. 25, 105010 (2010)Google Scholar
  118. 118.
    R. Mariappan, T. Mahalingam, V. Ponnuswamy, Opt. Int. J. Light Electron. Opt. 122(24), 2216–2219 (2011)Google Scholar
  119. 119.
    Z. Xu, Y. Chen, Semicond. Sci. Technol. 27, 035007 (2012)Google Scholar
  120. 120.
    B. Ghosh, M. Das, P. Banerjee, S. Das, Appl. Surf. Sci. 254(20), 6436–6440 (2008)Google Scholar
  121. 121.
    B. Ghosh, M. Das, P. Banerjee, S. Das, Semicond. Sci. Technol. 23, 125013–125018 (2008)Google Scholar
  122. 122.
    B. Ghosh, S. Chowdhury, P. Banerjee, S. Das, Thin Solid Films 519(10), 3368–3372 (2011)Google Scholar
  123. 123.
    N.K. Reddy, K.T.R. Reddy, Thin Solid Films 325(1–2), 4–6 (1998)Google Scholar
  124. 124.
    N.K. Reddy, K.R. Reddy, J. Phys. D Appl. Phys. 32, 988–990 (1999)Google Scholar
  125. 125.
    B. Thangaraju, P. Kaliannan, J. Phys. D Appl. Phys. 33(9), 1054–1059 (2000)Google Scholar
  126. 126.
    K. Ramakrishna Reddy, P. Purandar Reddy, R. Miles, P. Datta, Opt. Mater. 17, 295–298 (2001)Google Scholar
  127. 127.
    N.K. Reddy, K.T.R. Reddy, Phys. B 368, 25–31 (2005)Google Scholar
  128. 128.
    N.K. Reddy, K.T.R. Reddy, Solid-State Electron. 49, 902–906 (2005)Google Scholar
  129. 129.
    N.K. Reddy, K. Reddy, Mater. Res. Bull. 41, 414–422 (2006)Google Scholar
  130. 130.
    N.K. Reddy, K.T.R. Reddy, Mater. Chem. Phys. 102, 13–18 (2007)Google Scholar
  131. 131.
    M. Devika, N.K. Reddy, F. Patolsky, K. Ramesh, K.R. Gunasekhar, Appl. Phys. Lett. 95, 261907 (2009)Google Scholar
  132. 132.
    T. Sajeesh, C.S. Kartha, C. Sanjeeviraja, Y. Kashiwaba, K.P. Vijayakumar, J. Phys. D Appl. Phys. 43, 445102–445108 (2010)Google Scholar
  133. 133.
    B.G. Jeyaprakash, R.A. Kumar, K. Kesavan, A. Amalarani, J. Am. Sci. 6(3), 22–26 (2010)Google Scholar
  134. 134.
    M.R. Fadavieslam, N. Shahtahmasebi, N. Shahtasmasebi, M.M. Bagheri-Mohagheghi, Phys. Scr. 84, 035705 (2011)Google Scholar
  135. 135.
    T.H. Sajeesh, A.S. Cheiran, C.S. Kartha, K.P. Vijayakumar, Energy Proc. 15, 325–332 (2012)Google Scholar
  136. 136.
    T.H. Sajeesh, K.B. Jinesh, M. Rao, C.S. Kartha, K.P. Vijayakumar, Phys. Status Solidi A 209(7), 1274–1278 (2012)Google Scholar
  137. 137.
    M. Patel, I. Mukhopadhyay, A. Ray, Opt. Mater. 35(9), 1693–1699 (2013)Google Scholar
  138. 138.
    K.T.R. Reddy, P.P. Reddy, P.K. Datta, R.W. Miles, Thin Solid Films 403–404, 116–119 (2002)Google Scholar
  139. 139.
    K. Hartman, J.L. Johnson, M.I. Bertoni, D. Recht, M.J. Aziz, M.A. Scarpulla, Thin Solid Films 519(21), 7421–7424 (2011)Google Scholar
  140. 140.
    W. Guang-Pu, Z. Zhi-Lin, Z. Wei-Ming, G. Xiang-Hong, C. Wei-Qun, H. Tanamura, M. Yamaguchi, H. Noguchi, T. Nagatomo, O. Omoto, in Proceedings of the 1st IEEE World Conference on Photovoltaic Energy Conversion, Honolulu, U.S.A., vol. 365 (1994)Google Scholar
  141. 141.
    C.R. Sekhar, K.K. Malay, D.D. Gupta, Thin Solid Films 350, 72 (1999)Google Scholar
  142. 142.
    B. Subramanian, T. Mahalingam, C. Sanjeeviraja, M. Jayachandran, M.J. Chockalingam, Bull. Electrochem. 14(11), 398–401 (1998)Google Scholar
  143. 143.
    P. Sinsermsuksakul, L. Sun, S.W. Lee, H.H. Park, S.B. Kim, C. Yang, R.G. Gordon, Adv. Energy Mater. 4, 15 (2014). doi: 10.1002/aenm.201400496 Google Scholar
  144. 144.
    D. Avellaneda, B. Krishnan, T.K. Das Roy, G.A. Castillo, S. Shaji, J. Mater. Sci. Mater. Electron. 110(3), 667–672 (2013)Google Scholar
  145. 145.
    T. Ikuno, R. Suzuki, K. Kitazumi, N. Takahashi, N. Kato, K. Higuchi, Appl. Phys. Lett. 102, 193901 (2013)Google Scholar
  146. 146.
    A. Wangperawong, P.-C. Hsu, Y. Yee, S.M. Herron, B.M. Clemens, Y. Cui, S.F. Bent, Appl. Phys. Lett. 105(17), 173904 (2014)Google Scholar
  147. 147.
    B. Subramanian, C. Sanjeeviraja, M. Jayachandran, Mater. Chem. Phys. 71, 40 (2001)Google Scholar
  148. 148.
    B. Ghosh, M. Das, P. Banerjee, S. Das, Semicond. Sci. Tech. 24, 025024/1–025024/7 (2009)Google Scholar
  149. 149.
    D. Avellaneda, M.T.S. Nair, P.K. Nair, Thin Solid Films 517, 2500–2502 (2009)Google Scholar
  150. 150.
    Y. Wang, H. Gong, B. Fan, G. Hu, J. Phys. Chem. C 114, 3256 (2010)Google Scholar
  151. 151.
    J. Malaquias, P.A. Fernandes, P.M.P. Salome, A.F. da Cunha, Thin Solid Films 519, 7416 (2011)Google Scholar
  152. 152.
    G. Yue, Y. Lin, X. Wen, L. Wang, D. Peng, J. Mater. Chem. 22, 16437 (2012)Google Scholar
  153. 153.
    A. Schneikart, H.-J. Schimper, A. Klein, W. Jaegermann, J. Phys. D Appl. Phys. 46(30), 305109 (2013)Google Scholar
  154. 154.
    H.H. Park, R. Heasley, L. Sun, V. Steinmann, R. Jaramillo, K. Hartman, R. Chakraborty, P. Sinsermsuksakul, D. Chua, T. Buonassisi, R.G. Gordon, Prog. Res. Appl. Photovolt. (2014). doi: 10.1002/pip.2504 Google Scholar
  155. 155.
    M. Sugiyama, K.T.R. Reddy, N. Revathi, Y. Shimamoto, Y. Murata, Thin Solid Films 519(21), 7429–7431 (2011)Google Scholar
  156. 156.
    M. Ichimura, Sol. Energy Mater. Sol. Cells 93(3), 375 (2009)Google Scholar
  157. 157.
    K.T.R. Reddy, K. Ramya, G. Sreedevi, T. Shimizu, Y. Murata, M. Sugiyama, Energy Proc. 10, 172–176 (2011)Google Scholar
  158. 158.
    L. Sun, R. Haight, P. Sinsermsuksakul, S.B. Kim, H.H. Park, R.G. Gordon, Appl. Phys. Lett. 103, 181904 (2013)Google Scholar
  159. 159.
    A. Niemegeers, M. Burgelman, A. Devos, Appl. Phys. Lett. 67(6), 843 (1995)Google Scholar
  160. 160.
    T. Minemoto, T. Matsui, H. Takakura, Y. Hamakawa, T. Negami, Y. Hashimoto, T. Uenoyama, M. Kitagawa, Sol. Energy Mater. Sol. Cells 67(1–4), 83 (2001)Google Scholar
  161. 161.
    P. Sinsermsuksakul, R. Chakraborty, S.B. Kim, S.M. Heald, T. Buonassisi, R.G. Gordon, Chem. Mater. 24(23), 4556–4562 (2012)Google Scholar
  162. 162.
    K.T.R. Reddy, P.A. Nwofe, R.W. Miles, Electron. Mater. Lett. 9(3), 363–366 (2013)Google Scholar
  163. 163.
    M. Devika, N.K. Reddy, F. Patolsky, K.R. Gunasekhar, J. Appl. Phys. 104, 124503 (2008)Google Scholar
  164. 164.
    K. Barri, M. Jayabal, H. Zhao, D.L. Morel, S. Asher, J.W. Pankow, M.R. Young, C.S. Ferekides, in Proceedings of 31th IEEE, PVSC, Orlando, Florida, January 3–7 (2005)Google Scholar
  165. 165.
    X. Wu, Y. Yan, R.G. Dhere, Y. Zhang, J. Zhou, C. Perkins, B. To, Phys. Status Solidi c 1(4), 1062–1066 (2004)Google Scholar
  166. 166.
    Y. Sanchez, M. Neuschitzer, M. Dimitrievska, M. Espindola-Rodriguez, J. Lopez-Garcia, V. Izquierdo-Roca, O. Vigil-Galán, E. Saucedo. High VOC Cu2ZnSnSe4/CdS:Cu based solar cell: evidences of a metal–insulator–semiconductor (MIS) type hetero-junction. in Photovoltaic Specialist Conference (PVSC), 2014 IEEE 40th, pp. 0417–0420Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Escuela Superior de Física y Matemáticas-Instituto Politécnico Nacional (IPN)MexicoMexico

Personalised recommendations