Electrodeposition of CdTe thin films using nitrate precursor for applications in solar cells

  • H. I. Salim
  • V. Patel
  • A. Abbas
  • J. M. Walls
  • I. M. Dharmadasa


Cadmium telluride (CdTe) thin films have been electrodeposited (ED) on glass/fluorine-doped tin oxide (FTO) substrates using simplified two-electrode system in acidic and aqueous solution containing Cd(NO3)2 4H2O and TeO2. The X-ray diffraction (XRD), optical absorption, photoelectrochemical (PEC) cell measurements, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) have been carried out to study the structural, optical, electrical and morphological properties of the CdTe layers. The XRD study shows that the ED-CdTe layers are polycrystalline with cubic crystal structure. Results obtained from optical absorption reveal that the bandgaps of the as-deposited and the CdCl2 treated CdTe layers are in the ranges ~1.50 to ~1.54 eV and ~1.46 to ~1.51 eV, respectively. Observation from PEC measurements indicates a p-, i- and n-type electrical conductivity for as-deposited CdTe layers grown in the cathodic voltage range (1,247–1,258) mV. The SEM images indicate noticeable change in CdTe grain size from ~85 to ~430 nm after CdCl2 treatment with uniform surface coverage of the glass/FTO substrate. The TEM images show the columnar growth structure for as-deposited and CdCl2 treated CdTe layers. The TEM images also indicate an increase in grain’s diameter from ~50 to ~200 nm after CdCl2 treatment.


TeO2 Cathodic Potential CdTe Layer Electrodeposition Technique CdTe Thin Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Paul Bingham, O. K. Echendu, Fijay Fauzi, Azlian Abdul-Manaf, Mohammad Madugu and Olajide I. Olusola for their contributions to this work. The principal author wishes to thank the Ministry of Higher Education & Scientific Research at Kurdistan Region of Iraq for financial support.


  1. 1.
    J.J. Loferski, J. Appl. Phys. 27, 777 (1956)CrossRefGoogle Scholar
  2. 2.
    X. Wu, Sol. Energy 77, 803–814 (2004)CrossRefGoogle Scholar
  3. 3.
    T.L. Chu, S.S. Chu, C. Ferekides, C.Q. Wu, J. Britt, C. Wang, J. Appl. Phys. 70, 7608 (1991)CrossRefGoogle Scholar
  4. 4.
    S. Ikegami, Sol. Cells 23, 89–105 (1988)CrossRefGoogle Scholar
  5. 5.
    S.J. Sandoval, M.M. Lira, I.H. Calderón, J. Appl. Phys. 72, 4197 (1992)CrossRefGoogle Scholar
  6. 6.
    J.L. Boone, T.P. Van Doren, A.K. Berry, Thin Solid Films 87, 259–264 (1982)CrossRefGoogle Scholar
  7. 7.
    S. Lalitha, R. Sathiyamoorthy, S. Senthilarasu, A. Subbarayan, K. Natarajan, Sol. Energy Mater. Sol. Cells 2, 187–199 (2004)CrossRefGoogle Scholar
  8. 8.
    S.K. Das, G.C. Morris, Sol. Energy Mater. Sol. Cells 28, 305–316 (1993)CrossRefGoogle Scholar
  9. 9.
    B.M. Basol, J. Appl. Phys. 55, 601 (1984)CrossRefGoogle Scholar
  10. 10.
    A.K. Turner et al., Sol. Energy Mater. 23, 388–393 (1991)CrossRefGoogle Scholar
  11. 11.
    D. Cunningham, M. Rubich, D. Skinner, Prog. Photovolt: Res. Appl. 10, 159–168 (2002)CrossRefGoogle Scholar
  12. 12.
    I.M. Dharmadasa, J. Haigh, J. Elechtrochem. Soc. 153(1), G47–G52 (2006)CrossRefGoogle Scholar
  13. 13.
    I.M. Dharmadasa, Advances in Thin-Films Solar Cells (Pan Stanford Publishing Pte. Ltd, Boulevard, Singapore, 2013), pp. 40–44Google Scholar
  14. 14.
    I.M. Dharmadasa, R.P. Burton, M. Simmonds, Sol. Energy Mater. Sol. Cells 90, 2191–2200 (2006)CrossRefGoogle Scholar
  15. 15.
    D.G. Diso, G.E.A. Muftah, V. Patel, I.M. Dharmadasa, J. Electrochem. Soc. 157(6), H647–H651 (2010)CrossRefGoogle Scholar
  16. 16.
    O.K. Echendu, F. Fauzi, A.R. Weerasinghi, I.M. Dharmadasa, Thin Solid Films 556, 529–534 (2014)CrossRefGoogle Scholar
  17. 17.
    T. Nishio, M. Takahashi, S. Wada, T. Miyauchi, K. Wakita, H. Goto, S. Sato, O. Sakurada, Electr Eng Jpn 164(3), 97–102 (2008)CrossRefGoogle Scholar
  18. 18.
    P.V. Braun, P. Osenar, M. Twardowski, G.N. Tew, S.I. Stupp, Adv. Funct. Mater. 15, 1745–1750 (2005)CrossRefGoogle Scholar
  19. 19.
    J. Sun, D.K. Zhong, D.R. Gamelin, Energy Environ. Sci. 3, 1252–1261 (2010)CrossRefGoogle Scholar
  20. 20.
    M.P.R. Panicker, M. Knaster, F.A. Kroger, J Electrochem Soc Electrochem Sci Technol 125(4), 566–572 (1978)CrossRefGoogle Scholar
  21. 21.
    J. Nowotny, T. Bak, M.K. Nowotny, L.R. Sheppard, Int. J. Hydrog Energy 32, 2609–2629 (2007)CrossRefGoogle Scholar
  22. 22.
    B.M. Basol, J. Appl. Phys. 58, 3809–3813 (1985)CrossRefGoogle Scholar
  23. 23.
    S.Y. Yang, J.C. Chou, H.Y. Ueng, Thin Solid Films 518, 4197–4202 (2010)CrossRefGoogle Scholar
  24. 24.
    A. Luque, S. Hegedus, Handbook of Photovoltaic Science and Engineering (Wiley, New York, 2003), pp. 623–624CrossRefGoogle Scholar
  25. 25.
    I.M. Dharmadasa, Coating 4, 282–307 (2014)CrossRefGoogle Scholar
  26. 26.
    J. Tauc et al., Phys. Stat. Sol. 15, 627–637 (1966)CrossRefGoogle Scholar
  27. 27.
    T.L. Chu, S.S. Chu, Solid-State Electron 38(3), 533–549 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • H. I. Salim
    • 1
  • V. Patel
    • 2
  • A. Abbas
    • 3
  • J. M. Walls
    • 3
  • I. M. Dharmadasa
    • 1
  1. 1.Electronic Materials and Sensors Group, Materials and Engineering Research InstituteSheffield Hallam UniversitySheffieldUK
  2. 2.Department of Engineering, Mechanics of Materials, General OfficeLeicester UniversityLeicesterUK
  3. 3.CREST (Centre for Renewable Energy Systems and Technology)Loughborough UniversityLoughborough, LeicestershireUK

Personalised recommendations