Structural, optical and magnetic investigations on Fe-doped ZnS nanoparticles

Article

Abstract

We have reported the structural, optical and magnetic properties induced in Fe-doped (Fe = 1, 5 and 10 %) ZnS nanoparticles, synthesized via low temperature chemical route. The elemental composition of Fe-doped ZnS nanoparticles has been confirmed using electron dispersive spectroscopy. The average crystallite size has been found ~10 nm. The wurtzite crystal structure of Fe-doped nanoparticles, confirmed using X-ray diffraction, indicate the lattice parameters, a = 3.84 Ǻ and, c = 6.25 Ǻ for undoped ZnS and, a = 3.75 Ǻ and, c = 6.14 Ǻ for 10 % Fe-doped ZnS nanoparticles. The band gap of the undoped and Fe-doped ZnS nanoparticles was found blue shifted as compared to the bulk counterpart. Blue shift in band gap further increases with increased Fe concentration in ZnS lattice. In photoluminescence (PL) spectra blue emission peak has been observed at 422 nm. The PL intensity has been found decreased with increased Fe doping. The magnetic studies as analyzed from M-H curves, obtained using vibrating sample magnetometer, indicated ferromagnetic behavior at 10 % Fe concentration, and weak ferromagnetic or paramagnetic like behavior at 5 % Fe concentration.

References

  1. 1.
    H. Ohno, Making nonmagnetic semiconductors ferromagnetic. Science 281, 951–956 (1998)CrossRefGoogle Scholar
  2. 2.
    J.K. Furdyna, Dilute magnetic semiconductors. J. Appl. Phys. 64, R29 (1988)CrossRefGoogle Scholar
  3. 3.
    M.L. Steigerwald, L.E. Brus, Semiconductor crystallites: a class of large molecules. Acc. Chem. Res. 23, 183–186 (1990)CrossRefGoogle Scholar
  4. 4.
    D. Kim, K.D. Min, J. Lee, J.H. Park, J.H. Chun, Influences of surface capping on particle size and optical characteristics of ZnS: Cu nanocrystals. Mater. Sci. Eng. B 131, 13–17 (2006)CrossRefGoogle Scholar
  5. 5.
    Y. Wang, N. Herron, Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem. 95, 525–532 (1991)CrossRefGoogle Scholar
  6. 6.
    V.L. Colvin, M.C. Schlamp, A.P. Alivisatos, Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–357 (1994)CrossRefGoogle Scholar
  7. 7.
    R.N. Bharagava, Doped nanocrystalline materials—physics and applications. J. Lumin. 70, 85–94 (1996)CrossRefGoogle Scholar
  8. 8.
    C.C. Chen, Y.J. Hsu, Y.F. Lin, S.Y. Lu, Superparamagnetism found in diluted magnetic semiconductor nanowires: Mn-doped CdSe. J. Phys. Chem. C 112, 17964–17968 (2008)CrossRefGoogle Scholar
  9. 9.
    S. Kumar, S. Kumar, N.K. Verma, S.K. Chakravarti, Room temperature ferromagnetism in solvothermally synthesized pure CdSe and CdSe: Ni nanorods. J. Mater. Sci. Mater. Electron. 22, 1456–1459 (2011)CrossRefGoogle Scholar
  10. 10.
    Z. Jindal, N.K. Verma, Enhanced luminescence of UV irradiated Zn1−xNixS nanoparticles. Mater. Chem. Phys. 124, 270–273 (2010)CrossRefGoogle Scholar
  11. 11.
    K. Kaur, G.S. Lotey, N.K. Verma, Structural, optical and magnetic properties of cobalt-doped CdS dilute magnetic semiconducting nanorods. Mater. Chem. Phys. 143, 141–146 (2013)Google Scholar
  12. 12.
    G.S. Lotey, J. Singh, N.K. Verma, Room temperature ferromagnetism in Tb-doped ZnO dilute magnetic semiconducting nanoparticles. J. Mater. Sci. Mater. Electron. 24, 3611–3616 (2013)CrossRefGoogle Scholar
  13. 13.
    G.S. Lotey, Z. Jindal, V. Singhi, N.K. Verma, Structural and photoluminescence properties of Eu-doped ZnS nanoparticles. Mater. Sci. Semicond. Process. 16, 2044–2050 (2013)CrossRefGoogle Scholar
  14. 14.
    R. Bhargava, D. Gallagher, T. Welker, Doped nanocrystals of semiconductors—a new class of luminescent materials. J. Lumin. 60, 275–280 (1994)CrossRefGoogle Scholar
  15. 15.
    S. Bhattacharya, D. Chakravorty, Electrical and magnetic properties of cold compacted iron-doped zinc sulfide nanoparticles synthesized by wet chemical method. Chem. Phys. Lett. 444, 319–323 (2007)CrossRefGoogle Scholar
  16. 16.
    S. Sambasivam, D.P. Joseph, J.G. Lin, C. Venkateswaran, Synthesis and characterization of thiophenol passivated Fe-doped ZnS nanoparticles. Mater. Sci. Eng. B 150, 125–129 (2008)CrossRefGoogle Scholar
  17. 17.
    N. Eryong, L. Donglai, Z. Yunsen, B. Xue, Y. Liang, J. Yong, J. Zhifeng, S. Xiaosong, Photoluminescence and magnetic properties of Fe-doped ZnS nano-particles synthesized by chemical co-precipitation. Appl. Surf. Sci. 257, 8762–8766 (2011)CrossRefGoogle Scholar
  18. 18.
    S. Kumar, N.K. Verma, Effect of Ni-doping on optical and magnetic properties of solvothermally synthesized ZnS wurtzite nanorods. J. Mater. Sci. Mater. Electron. 25, 785–790 (2014)CrossRefGoogle Scholar
  19. 19.
    S. Sambasivam, D.P. Joseph, J.G. Lin, C. Venkateswaran, Doping induced magnetism in Co-ZnS nanoparticles. J. Solid State Chem. 182, 2598–2601 (2009)CrossRefGoogle Scholar
  20. 20.
    I. Sarkar, M. Sanyal, S. Kar, S. Biswas, S. Banerjee, S. Chaudhuri, S. Takeyama, H. Mino, F. Komori, Ferromagnetism in zinc sulfide nanocrystals: dependence on manganese concentration. Phys. Rev. B 75, 224409 (2007)CrossRefGoogle Scholar
  21. 21.
    D.A. Reddy, G. Murali, R. Vijayalakshmi, B. Reddy, Room-temperature ferromagnetism in EDTA capped Cr-doped ZnS nanoparticles. Appl. Phys. A Mater. Sci. Process. 105, 119–124 (2011)CrossRefGoogle Scholar
  22. 22.
    S. Kumar, C.L. Chen, C.L. Dong, Y.K. Ho, J.F. Lee, T.S. Chan, R. Thangavel, T.K. Chen, B.H. Mok, S.M. Rao, M.K. Wu, Room temperature ferromagnetism in Ni-doped ZnS nanoparticles. J. Alloy. Compd. 554, 357–362 (2013)CrossRefGoogle Scholar
  23. 23.
    M. Wei, J. Cao, H. Fu, J. Yang, Y. Yan, L. Yang, D. Wang, D. Han, L. Fan, B. Wang, The structure and room temperature ferromagnetism property of the ZnS:Cu2+ nanoparticles. Mater. Sci. Semicond. Process. 16, 928–932 (2013)CrossRefGoogle Scholar
  24. 24.
    F. Zhu, S. Dong, G. Yang, Ferromagnetic properties in Fe-doped ZnS thin films. Optoelectron. Adv. Mater. 4, 2072–2075 (2010)Google Scholar
  25. 25.
    S. Biswas, S. Kar, Fabrication of ZnS nanoparticles and nanorods with cubic and hexagonal crystal structures: a simple solvothermal approach. Nanotechnology 19, 045710 (2008)CrossRefGoogle Scholar
  26. 26.
    A.L. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. Lett. 56, 978–982 (1939)Google Scholar
  27. 27.
    L. Zhang, D. Qin, G. Yang, Q. Zhang, The investigation on synthesis and optical properties of ZnS: Co nanocrystals by using hydrothermal method. Chalcogenide Lett. 9, 93–98 (2012)Google Scholar
  28. 28.
    K.T. Al-Rasoul, N.K. Abbas, Z.J. Shanan, Structural and optical characterization of Cu and Ni doped ZnS nanoparticles. Int. J. Electrochem. Sci. 8, 5594–5604 (2013)Google Scholar
  29. 29.
    C. Bi, L. Pan, M. Xu, L. Qin, J. Yin, Synthesis and magnetic properties of Co-doped wurtzite ZnS nanocrystals. Mater. Chem. Phys. 116, 363–367 (2009)CrossRefGoogle Scholar
  30. 30.
    S. Kumar, N.K. Verma, Ferromagnetic and weak superparamagnetic like behavior of Ni-doped ZnS nanocrystals synthesized by reflux method. J. Mater. Sci. Mater. Electron. 25, 1132–1137 (2014)CrossRefGoogle Scholar
  31. 31.
    Y. Li, C. Cao, Z. Chen, Magnetic and optical properties of Fe-doped ZnS nanoparticles synthesized by microemulsion method. Chem. Phys. Lett. 517, 55–58 (2011)CrossRefGoogle Scholar
  32. 32.
    D.P. Norton, M.E. Overberg, S.J. Pearton, K. Pruessner, Ferromagnetism in cobalt-implanted ZnO. Appl. Phys. Lett. 83, 5488 (2003)CrossRefGoogle Scholar
  33. 33.
    J.H. Park, M.G. Kim, H.M. Jang, S. Ryu, Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films. Appl. Phys. Lett. 84, 1338 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Nano Research Lab, School of Physics and Material ScienceThapar UniversityPatialaIndia
  2. 2.Department of PhysicsIndus International UniversityUnaIndia

Personalised recommendations