Effects of Ca doping on the energy storage properties of (Sr, Ca)TiO3 paraelectric ceramics

  • Gui-Fang Zhang
  • Hanxing LiuEmail author
  • Zhonghua Yao
  • Minghe Cao
  • Hua Hao


The energy storage properties of Ca-doped (Sr, Ca)TiO3 (SCT) paraelectric ceramics have been intensively investigated by traditional solid state sintering method. Phase structures and morphology were detected by the X-ray diffraction and SEM, respectively. The electric field strength dependence of polarization was measured and employed to calculate the energy storage density. The doped SCT ceramics exhibit high permittivity, low loss, and higher breakdown strength. At 333 kV/cm electric field strength, the energy storage density of the 2 mol % Ca-doped SrTiO3 ceramics with fine grain can achieve 1.95 J/cm3, which is 2.8 times of pure SrTiO3 in the literature, and its energy storage efficiency reaches 72.3 %. Therefore, the SCT ceramics might be a kind of promising energy storage dielectric material.


Dielectric Loss Electric Field Strength Weibull Distribution Weibull Modulus Breakdown Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by International Technology Cooperation Project from Ministry of Science and Technology of China (No. 2011DFA52680), Key Program of Natural Science Foundation of China (No. 50932004), Natural Science Foundation of China (No. 51102189), the Fundamental Research Funds for the Central Universities (No. 123243001), National Key Basic Research Program of China (No. 2015CB654601) and the program for New Century Excellent Talents in University (No. NCET-11-0685).


  1. 1.
    H. Ogihara, C.A. Randall, S. Trolier-Mckinstry, High-energy density capacitors utilizing 0.7BaTiO3–0.3BiScO3 ceramics. J. Am. Ceram. Soc. 92(8), 1719–1724 (2009)CrossRefGoogle Scholar
  2. 2.
    D.P. Shay, N.J. Podraza, N.J. Donnelly, C.A. Randall, High energy density, high temperature capacitors utilizing Mn-doped 0.8CaTiO3–0.2CaHfO3 ceramics. J. Am. Ceram. Soc. 95, 1348–1355 (2012)CrossRefGoogle Scholar
  3. 3.
    D. Zhan, Q. Xu, D.-P. Huang, H.-X. Liu, W. Chen, F. Zhang, Dielectric responses of glass-added Ba0.95Ca0.05Zr0.3Ti0.7O3 ceramics for energy storage capacitors. Phys. B Condens. Matter 440, 67–72 (2014)CrossRefGoogle Scholar
  4. 4.
    N. Ortega, A. Kumar, J.F. Scott, B.C. Douglas, M. Tomazawa, K. Shalini, D.G.B. Diestra, R.S. Katiyar, Relaxor-ferroelectric superlattices: high energy density capacitors. J. Phys.: Condens. Matter 24, 445901 (2012)Google Scholar
  5. 5.
    T.M. Correia, M. McMillen, M.K. Rokosz, P.M. Weaver, J.M. Gregg, G. Viola, M.G. Cain, Density ceramic for energy storage applications. J. Am. Ceram. Soc. 96(9), 2699–2702 (2013)CrossRefGoogle Scholar
  6. 6.
    Q. Zhang, Y. Zhang, X. Wang, T. Ma, Z. Yuan, Influence of sintering temperature on energy storage properties of BaTiO3–(Sr1−1.5xBix)TiO3 ceramics. Ceram. Int. 38, 4765–4770 (2012)CrossRefGoogle Scholar
  7. 7.
    I. Burn, D.M. Smyth, Energy storage in ceramic dielectrics. J. Mater. Sci. 7, 339–343 (1972)CrossRefGoogle Scholar
  8. 8.
    G. Dong, S. Ma, J. Du, J. Cui, Dielectric properties and energy storage density in ZnO-doped Ba0.3Sr0.7TiO3 ceramics. Ceram. Int. 35, 2069–2075 (2009)CrossRefGoogle Scholar
  9. 9.
    H. Yan, T. Jo, H. Okuzaki, Synthesis and electrophoretic deposition of high-dielectric-constant SrTiO3 nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 346(1–3), 99–105 (2009)CrossRefGoogle Scholar
  10. 10.
    H. Yan, T. Jo, H. Okuzaki, Low-voltage pentacene field-effect transistors fabricated on high-dielectric-constant strontium titanate insulator, Japanese. J. Appl. Phys. 49(3), 030203 (2010)CrossRefGoogle Scholar
  11. 11.
    A.D. Hilton, B.W. Ricketts, Dielectric properties of Ba1−xSrxTiO3 ceramics. J. Phys. D Appl. Phys. 29(5), 1321–1325 (1996)CrossRefGoogle Scholar
  12. 12.
    R.P. Wang, Y. Inaguma, M. Itoh, Dielectric properties and phase transition mechanisms in Sr1−xBaxTiO3 solid solution at low doping concentration. Mater. Res. Bull. 36, 1693–1701 (2001)CrossRefGoogle Scholar
  13. 13.
    G. Trini, A.D. Hilton, B.W. Ricketts, Dielectric energy storage in PbxSr1−xTiO3 ceramics. J. Mater. Sci.: Mater. Electron. 12(1), 17–20 (2001)Google Scholar
  14. 14.
    Q.-G. Hu, Z.-Y. Shen, Y.-M. Li, Z.-M. Wang, W.-Q. Luo, Z.-X. Xie, Enhanced energy storage properties of dysprosium doped strontium titanate ceramics. Ceram. Int. (Part B) 40(1), 2529–2534 (2014)CrossRefGoogle Scholar
  15. 15.
    Z.-Y. Shen, Y.-M. Li, W.-Q. Luo, Z.-M. Wang, X.-Y. Gu, R.-H. Liao, Structure and dielectric properties of NdxSr1−xTiO3 ceramics for energy storage application. J. Mater. Sci.: Mater. Electron. 24, 704–710 (2013)Google Scholar
  16. 16.
    G. Zhao, Y. Li, H. Liu, J. Xu, H. Hao, M. Cao, Z. Yu, Effect of SiO2 additives on the microstructure and energy storage density of SrTiO3 ceramics. J. Ceram. Process. Res. 13, 310–314 (2012)Google Scholar
  17. 17.
    L.X. Li, X.X. Yu, H.C. Cai, Q.W. Liao, Y.M. Han, Z.D. Gao, Preparation and dielectric properties of BaCu(B2O5)-doped SrTiO3-based ceramics for energy storage. Mater. Sci. Eng., B 178(20), 1509–1514 (2013)CrossRefGoogle Scholar
  18. 18.
    Z. Wang, M. Cao, Z. Yao, Z. Song, G. Li, W. Hu, H. Hao, H. Liu, Dielectric relaxation behavior and energy storage properties in SrTiO3 ceramics with trace amounts of ZrO2 additives. Ceram. Int. 40, 14127–14132 (2014)CrossRefGoogle Scholar
  19. 19.
    S. Chao, F. Dogan, BaTiO3–SrTiO3 layered dielectrics for energy storage. Mater. Lett. 65(6), 978–981 (2011)CrossRefGoogle Scholar
  20. 20.
    Z.J. Wang, M.H. Cao, Z.H. Yao, G.Y. Li, Z. Song, W. Hu, H. Hao, H.X. Liu, Z.Y. Yu, Effects of Sr/Ti ratio on the microstructure and energy storage properties of nonstoichiometric SrTiO3 ceramics. Ceram. Int. (Part A) 40(1), 929–933 (2014)CrossRefGoogle Scholar
  21. 21.
    M. Ceh, D. Kolar, L. Golic, J. Solid State Chem. 68, 68–72 (1987)CrossRefGoogle Scholar
  22. 22.
    Y. Nakano, N. Ichinose, J. Mater. Res. 5, 2910–2921 (1990)CrossRefGoogle Scholar
  23. 23.
    Z.H. Yao, H.X. Liu, Y. Liu, Z.H. Wu, Z.Y. Shen, Y. Liu, M.H. Cao, Structure and dielectric behavior of Nd-doped BaTiO3perovskites. Mater. Chem. Phys. 109(2–3), 475–481 (2008)CrossRefGoogle Scholar
  24. 24.
    T. Mitsui, W.B. Westphal, Dielectric and X-Ray Studies of CaxBa1−xTiO3, and CaxSr1−xTiO3. Phys. Rev. 124(5), 1354–1359 (1961)CrossRefGoogle Scholar
  25. 25.
    D.W. Kang, T.G. Park, J.W. Kim, J.S. Kim, H.S. Lee, H. Cho, Effect of dysprosium oxide addition on the microstructure and dielectric properties of BaTiO3 ceramics. Electron. Mater. Lett. 6(4), 145–149 (2010)CrossRefGoogle Scholar
  26. 26.
    S.H. Yoon, S.H. Kwon, K.H. Hur, Dielectric relaxation behavior of acceptor (Mg)-doped BaTiO3. J. Appl. Phys. 109, 084117 (2011)CrossRefGoogle Scholar
  27. 27.
    S.H. Yoon, C.A. Randall, K.H. Hur, Influence of grain size on impedance spectra and resistance degradation behavior in acceptor (Mg)-doped BaTiO3 ceramics. J. Am. Ceram. Soc. 92(12), 2944–2952 (2009)CrossRefGoogle Scholar
  28. 28.
    C. Ang, Z. Yu, L.E. Cross, Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi:SrTiO3. Phys. Rev. B 62, 228–236 (2000)CrossRefGoogle Scholar
  29. 29.
    J. Chen, Y. Zhang, C. Deng, X. Dai, L. Li, Effect of the Ba/Ti ratio on the microstructures and dielectric properties of barium titanate-based glass ceramics. J. Am. Ceram. Soc. 92, 1350–1353 (2009)CrossRefGoogle Scholar
  30. 30.
    A.L. Young, G.E. Hilmas, S.C. Zhang, R.W. Schwartz, Mechanical vs. electrical failure mechanisms in high voltage, high energy density multilayer ceramic capacitors. J. Mater. Sci. 42, 5613–5619 (2007)CrossRefGoogle Scholar
  31. 31.
    J. Huang, Y. Zhang, T. Ma, H. Li, L. Zhang, Correlation between dielectric breakdown strength and interface polarization in barium strontium titanate glass ceramics. Appl. Phys. Lett. 96, 042902 (2010)CrossRefGoogle Scholar
  32. 32.
    Y. Ye, S.C. Zhang, F. Dogan, E. Schamiloglu, J. Gaudet, P. Castro, M. Royba, M. Joler, Influence of nanocrystalline grain size on the breakdown strength of ceramic dielectrics. PPC-2003:14th IEEE International Pulsed Power Conference, vol. 1, pp. 719–722 (2003)Google Scholar
  33. 33.
    Z. Song, H. Liu, S. Zhang, Z. Wang, Y. Shi, H. Hao, M. Cao, Z. Yao, Z. Yu, Effect of grain size on the energy storage properties of (Ba0.4Sr0.6)TiO3 paraelectric ceramics. J. Eur. Ceram. Soc. 34, 1209–1217 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Gui-Fang Zhang
    • 1
  • Hanxing Liu
    • 1
    Email author
  • Zhonghua Yao
    • 1
  • Minghe Cao
    • 1
  • Hua Hao
    • 1
  1. 1.State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanPeople’s Republic of China

Personalised recommendations