Graphene synthesis, characterization and its applications in nanophotonics, nanoelectronics, and nanosensing

  • F. Akbar
  • M. Kolahdouz
  • Sh. Larimian
  • B. Radfar
  • H. H. Radamson


In the last decade, as semiconductor industry was approaching the end of the exponential Moore’s roadmap for device downscaling, the necessity of finding new candidate materials has forced many research groups to explore many different types of non-conventional materials. Among them, graphene, CNTs and organic conductors are the most successful alternatives. Finding a material with metallic properties combined with field effect characteristics on nanoscale level has been always a dream to continue the ever-shrinking road of the nanoelectronics. Due to its fantastic features such as high mobility, optical transparency, room temperature quantum Hall effect, mechanical stiffness, etc. the atomically thin carbon layer, graphene, has attracted the industry’s attention not only in the micro-, nano-, and opto-electronics but also in biotechnology. This paper reviews the basics and previous works on graphene technology and its developments. Compatibility of this material with Si processing technology is its crucial characteristic for mass production. This study also reviews the physical and electrical properties of graphene as a building block for other carbon allotropes. Different growth methods and a wide range of graphene’s applications will be discussed and compared. A brief comparison on the performance result of different types of devices has also been presented. Until now, the main focus of research has been on the background physics and its application in electronic devices. But, according to the recent works on its applications in photonics and optoelectronics, where it benefits from the combination of its unique optical and electronic properties, even without a bandgap, this material enables ultrawide-band tunability. Here in this article we review different applications and graphene’s advantages and drawbacks will be mentioned to conclude at the end.


Graphene Sheet Sheet Resistance Graphene Layer Plasma Enhance Chemical Vapor Deposition Graphene Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    V. Eswaraiah, S.S.J. Aravind, S. Ramaprabhu, Top–down method for synthesis of highly conducting graphene by exfoliation of graphite oxide using focused solar radiation. J. Mater. Chem. 21(19), 6800 (2011)Google Scholar
  2. 2.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)Google Scholar
  3. 3.
    K.W.C. Lai, C.K.M. Fung, H. Chen, R. Yang, B. Song, N. Xi, Fabrication of graphene devices for infrared detection. IEEE Nanotechnology Materials and Devices Conference, pp. 14–17 (2010)Google Scholar
  4. 4.
    G. Liu, A.A. Balandin, Tuning of graphene properties via controlled exposure to electron beams. IEEE Trans. Nanotechnol. 10(4), 865–870 (2011)Google Scholar
  5. 5.
    C. Baatar, Promises of graphene nanoelectronics, in Nanotechnology, 2008. NANO’08. 8th IEEE Conference on, 2008, vol. 3, p. 190Google Scholar
  6. 6.
    J.H. Chen, C. Jang, S. Xiao, M. Ishigami, M.S. Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 3(4), 206–209 (2008)Google Scholar
  7. 7.
    K. Bolotin, K. Sikes, Z. Jiang, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008)Google Scholar
  8. 8.
    C. Y. Sung, Graphene nanoelectronics. In Semiconductor Device Research Symposium, 2009. ISDRS’09. International, 40, 1–2 (2009)Google Scholar
  9. 9.
    K. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M.K.I. Grigorieva, S.V. Dubonos, A. Firsov, Two-dimensional gas of massless dirac fermions in graphene. Nature 438(7065), 197–200 (2005)Google Scholar
  10. 10.
    S. Vaziri, Fabrication and characterization of graphene field effect transistors, Master thesis at Royal Institute of Technology KTH, 2011Google Scholar
  11. 11.
    S. Kim, J. Ihm, H.J. Choi, Y.W. Son, Origins of anomalous electronic structures of epitaxial graphene on silicon carbide. Phys. Rev. Lett. 100(17), 176802 (2008)Google Scholar
  12. 12.
    F. Yavari, C. Kritzinger, C. Gaire, L. Song, H. Gulapalli, T. Borca-Tasciuc, P.M. Ajayan, N. Koratkar, Tunable bandgap in graphene by the controlled adsorption of water molecules. Small 6(22), 2535–2538 (2010)Google Scholar
  13. 13.
    T. Gokus, R.R. Nair, A. Bonetti, M. Böhmler, A. Lombardo, K.S. Novoselov, A.K. Geim, A.C. Ferrari, A. Hartschuh, Making graphene luminescent by oxygen plasma treatment. ACS Nano 3(12), 3963–3968 (2009)Google Scholar
  14. 14.
    M.G. Ancona, Electron transport in graphene from a diffusion-drift perspective. IEEE Trans. Electron. Device. 57(3), 681–689 (2010)Google Scholar
  15. 15.
    G. S. Kliros, Quantum capacitance of bilayer graphene, in CAS 2010 Proceedings (international semiconductor conference), 2010(1), 69–72Google Scholar
  16. 16.
    G.M. Rutter, S. Jung, N.N. Klimov, D.B. Newell, N.B. Zhitenev, J.A. Stroscio, Microscopic polarization in bilayer graphene. Nat. Phys. 7(8), 649–655 (2011)Google Scholar
  17. 17.
    G. Fiori, G. Iannaccone, On the possibility of tunable-gap bilayer graphene FET. IEEE Electron. Device Lett. 30(3), 261–264 (2009)Google Scholar
  18. 18.
    A. Avetisyan, B. Partoens, F. Peeters, Stacking order dependent electric field tuning of the band gap in graphene multilayers. Phys. Rev. B 81(11), 115432 (2010)Google Scholar
  19. 19.
  20. 20.
    G. Rutter, S. Jung, N. Klimov, Microscopic polarization in bilayer graphene. Nat. Phys. 7(8), 649–655 (2011)Google Scholar
  21. 21.
    Y. Zhang, T.T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459(7248), 820–823 (2009)Google Scholar
  22. 22.
    V. Barone, O. Hod, G.E.G.E. Scuseria, Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 6(12), 2748–2754 (2006)Google Scholar
  23. 23.
    M.Y. Han, B. Özyilmaz, Y. Zhang, P. Kim, Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98(20), 206805 (2007)Google Scholar
  24. 24.
    C. Lian, K. Tahy, T. Fang, G. Li, H. G. Xing, D. Jena, Quantum transport in patterned graphene nanoribbons. In Semiconductor Device Research Symposium, 2009. ISDRS’09. International, pp. 1–2, (2009)Google Scholar
  25. 25.
    F. Xia, D.B.D.B. Farmer, Y.-M. Lin, P. Avouris, Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 10(2), 715–718 (2010)Google Scholar
  26. 26.
    N. Jung, N. Kim, S. Jockusch, N.J. Turro, P. Kim, L. Brus, Charge transfer chemical doping of few layer graphenes: charge distribution and band gap formation. Nano Lett. 9(12), 4133 (2009)Google Scholar
  27. 27.
    M.I. Katsnelson, Graphene: carbon in two dimensions. Mater. Today 10(1), 20–27 (2007)Google Scholar
  28. 28.
    S. Berber, Y.K. Kwon, D. Tomanek, Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84(2000), 4613–4616 (2000)Google Scholar
  29. 29.
    T. Wassmann, A.P. Seitsonen, A.M. Saitta, M. Lazzeri, F. Mauri, Structure, stability, edge states and aromaticity of graphene ribbons. Phys. Rev. Lett. 101(9), 96402 (2008)Google Scholar
  30. 30.
    F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics 4(9), 611–622 (2010)Google Scholar
  31. 31.
    M. Dragoman, D. Dragoman, A. Muller, High frequency devices based on graphene. In Semiconductor Conference, 2007. CAS 2007. International, pp. 53–56 (2007)Google Scholar
  32. 32.
    R. Shishir, D. Ferry, S. Goodnick, Intrinsic mobility limit in graphene at room temperature. In Nanotechnology, 2009. IEEE-NANO 2009. 9th IEEE Conference on, 8, 21–24 (2009)Google Scholar
  33. 33.
    Z. Tao, Y. Sheng-ke, Z. Min, Z. Yue, C. Jing, The research of preparation and catalytic property of the titanium plate which loaded with the graphene modified SnO2. Water Resour. Environ. Prot. (ISWREP) Int. Symp. 2, 1501–1503 (2011)Google Scholar
  34. 34.
    A. Lherbier, X. Blase, Y.M. Niquet, F. Triozon, S. Roche, Charge transport in chemically doped 2D graphene. Phys. Rev. Lett. 101(3), 36808 (2008)Google Scholar
  35. 35.
    R. Murali, K. Brenner, Y. Yang, T. Beck, J.D. Meindl, Resistivity of graphene nanoribbon (GNR) interconnects. Electron. Device Lett. IEEE 30(6), 611–613 (2009)Google Scholar
  36. 36.
    M. Clavel, T. Poiroux, M. Mouis, L. Becerra, J.L. Thomassin, A. Zenasni, G. Lapertot, D. Rouchon, D. Lafond, O. Faynot, Influence of annealing temperature on the performance of graphene/SiC transistors with high-k/metal gate. In Ulis 2011 Ultimate Integration on Silicon International Conference on Ultimate Integration of Silicon: ULIS, 2011, 2011, pp. 1–4Google Scholar
  37. 37.
    H. Cheng, Development of graphene-based materials for energy storage. In Vacuum Electron Sources Conference and Nanocarbon (IVESC), 2010 8th International, 2010, 3187(2010), 49Google Scholar
  38. 38.
    D. Elias, R. Nair, T. Mohiuddin, S. Morozov, P. Blake, M. Halsall, A. Ferrari, D. Boukhvalov, M. Katsnelson, A. Geim et al., Control of graphene’s properties by reversible hydrogenation. Science 323(5914), 610–613 (2009)Google Scholar
  39. 39.
    A. Geim, Graphene: status and prospects. Science 324(5934), 1530–1534 (2009)Google Scholar
  40. 40.
    Y. Yang, R. Murali, Impact of size effect on graphene nanoribbon transport. Electron. Device Lett. IEEE 31(3), 237–239 (2010)Google Scholar
  41. 41.
    K. Bolotin, K. Sikes, J. Hone, H. Stormer, P. Kim, Temperature-dependent transport in suspended graphene. Phys. Rev. Lett. 101, 096802 (2008)Google Scholar
  42. 42.
    A.A. Balandin, Thermal properties of graphene, carbon nanotubes and nanostructured carbon materials. Nat. Mater. 10(8), 569–581 (2011)Google Scholar
  43. 43.
    M.F. Craciun, S. Russo, M. Yamamoto, S. Tarucha, Tuneable electronic properties in graphene. Nano Today 6(1), 42–60 (2011)Google Scholar
  44. 44.
    C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)Google Scholar
  45. 45.
    Y. Shi, K.K. Kim, A. Reina, M. Hofmann, L.J. Li, J. Kong, Work function engineering of graphene electrode via chemical doping. ACS Nano 4(5), 2689–2694 (2010)Google Scholar
  46. 46.
    L. Ponomarenko, F. Schedin, M. Katsnelson, R. Yang, E. Hill, K. Novoselov, A. Geim, Chaotic dirac billiard in graphene quantum dots. Science 320(5874), 356–358 (2008)Google Scholar
  47. 47.
    R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308 (2008)Google Scholar
  48. 48.
    M. Cox, A. Gorodetsky, B. Kim, K.S. Kim, Z. Jia, P. Kim, C. Nuckolls, I. Kymissis, Single-layer graphene cathodes for organic photovoltaics. Appl. Phys. Lett. 98(12), 123303 (2011)Google Scholar
  49. 49.
    K.F. Mak, C.H. Lui, J. Shan, T.F. Heinz, Observation of an electric-field induced band gap in bilayer graphene by infrared spectroscopy. Phys. Rev. Lett. 102(25), 256405 (2009)Google Scholar
  50. 50.
    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau et al., Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)Google Scholar
  51. 51.
    W. Deng, W.A. Goddard, J. Che, C. Tahir, Thermal conductivity of diamond and related materials from molecular dynamics simulations. J. Chem. Phys. 113(16), 6888–6900 (2000)Google Scholar
  52. 52.
    A.A.K. Geim, A.H.A. MacDonald, Graphene: exploring carbon flatland. Phys. Today 60(8), 35–41 (2007)Google Scholar
  53. 53.
    A. Kathalingam, V. Senthilkumar, J.-K. Rhee, Hysteresis I–V nature of mechanically exfoliated graphene FET. J. Mater. Sci. Mater. Electron. 25(3), 1303–1308 (2014)Google Scholar
  54. 54.
    K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102(30), 10451–10453 (2005)Google Scholar
  55. 55.
    K. Choi, A. Ali, J. Jo, Randomly oriented graphene flakes film fabrication from graphite dispersed in N-methyl-pyrrolidone by using electrohydrodynamic atomization technique. J. Mater. Sci. Mater. Electron. 24(12), 4893–4900 (2013)Google Scholar
  56. 56.
    Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3(9), 563–568 (2008)Google Scholar
  57. 57.
    D. Nuvoli, L. Valentini, V. Alzari, S. Scognamillo, S.B. Bon, M. Piccinini, J. Illescas, A. Mariani, High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid. J. Mater. Chem. 21(10), 3428 (2011)Google Scholar
  58. 58.
    X. Wang, L. Zhi, K. Müllen, Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1), 323–327 (2008)Google Scholar
  59. 59.
    V. Alzari, D. Nuvoli, S. Scognamillo, Graphene-containing thermoresponsive nanocomposite hydrogels of poly (N-isopropylacrylamide) prepared by frontal polymerization. J. Mater. Chem. 21(24), 8727 (2011)Google Scholar
  60. 60.
    M. Choucair, P. Thordarson, J. Stride, Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol. 4, 2–5 (2008)Google Scholar
  61. 61.
    H.C. Schniepp, J.-L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud’homme, R. Car, D.A. Saville, I.A. Aksay, Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110(17), 8535–8539 (2006)Google Scholar
  62. 62.
    M. Ali-Umar, C. Yap, R. Awang, M. Hj-Jumali, M. Mat-Salleh, M. Yahaya, Characterization of multilayer graphene prepared from short-time processed graphite oxide flake. J. Mater. Sci. Mater. Electron. 24(4), 1282–1286 (2013)Google Scholar
  63. 63.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. (NY) 45(7), 1558–1565 (2007)Google Scholar
  64. 64.
    A. Chakrabarti, J. Lu, J.C. Skrabutenas, T. Xu, Z. Xiao, J.A. Maguire, N.S. Hosmane, Conversion of carbon dioxide to few-layer graphene. J. Mater. Chem. 21(26), 9491 (2011)Google Scholar
  65. 65.
    L. Jiao, X. Wang, G. Diankov, H. Wang, H. Dai, Facile synthesis of high-quality graphene nanoribbons. Nat. Nanotechnol. 5(5), 321–325 (2010)Google Scholar
  66. 66.
    L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, Narrow graphene nanoribbons from carbon nanotubes. Nature. 458, 877–880 (2009)Google Scholar
  67. 67.
    D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240), 872–876 (2009)Google Scholar
  68. 68.
    D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010)Google Scholar
  69. 69.
    K.S. Subrahmanyam, L.S. Panchakarla, A. Govindaraj, C.N.R. Rao, Simple method of preparing graphene flakes by an arc-discharge method. J. Phys. Chem. C 113(11), 4257–4259 (2009)Google Scholar
  70. 70.
    C. Zhu, S. Guo, Y. Fang, S. Dong, Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4(4), 2429–2437 (2010)Google Scholar
  71. 71.
    P. Macháč, T. Fidler, S. Cichoň, V. Jurka, Synthesis of graphene on Co/SiC structure. J. Mater. Sci. Mater. Electron. 24(10), 3793–3799 (2013)Google Scholar
  72. 72.
    H. Huang, W. Chen, S. Chen, A.T.S. Wee, A. Thye, S. Wee, Bottom–up growth of epitaxial graphene on 6H-SiC (0001). ACS Nano 2(12), 2513–2518 (2008)Google Scholar
  73. 73.
    K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, J.L. McChesney, T. Ohta, S.A. Reshanov, J. Röhrl, E. Rotenberg, A.K. Schmid, D. Waldmann, H.B. Weber, T. Seyller, Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature. Mater. 8(3), 203–207 (2009)Google Scholar
  74. 74.
    S. Amini, J. Garay, G. Liu, A.A. Balandin, R. Abbaschian, Growth of large-area graphene films from metal–carbon melts. J. Appl. Phys. 108(9), 94321 (2010)Google Scholar
  75. 75.
    J. Hofrichter, B.N. Szafranek, M. Otto, T.J. Echtermeyer, M. Baus, A. Majerus, V. Geringer, M. Ramsteiner, H. Kurz, Synthesis of graphene on silicon dioxide by a solid carbon source. Nano Lett. 10(1), 36–42 (2010)Google Scholar
  76. 76.
    A. Reina, S. Thiele, X. Jia, S. Bhaviripudi, M.S. Dresselhaus, J.A. Schaefer, J. Kong, Growth of large-area single- and Bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res. 2, 509–516 (2009)Google Scholar
  77. 77.
    A. Reina, X. Jia, J. Ho, D. Nezich, V. Bulovic, M.S. Dresselhaus, J. Kong, H. Son, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30–35 (2009)Google Scholar
  78. 78.
    K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706–710 (2009)Google Scholar
  79. 79.
    Z. Juang, C.-Y. Wu, A.-Y. Lu, C.-Y. Su, K. Leou, F.-R. Chen, C.-H. Tsai, Graphene synthesis by chemical vapor deposition and transfer by a roll-to-roll process. Carbon. (NY) 48(11), 3169–3174 (2010)Google Scholar
  80. 80.
    X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, W. Cai, Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)Google Scholar
  81. 81.
    J. Sun, N. Lindvall, M. Cole, Low partial pressure chemical vapor deposition of graphene on copper. IEEE Trans. Nanotechnol. 11(2), 255–260 (2012)Google Scholar
  82. 82.
    A. Guermoune, T. Chari, F. Popescu, S.S. Sabri, Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon. (NY) 49(13), 4204–4210 (2011)Google Scholar
  83. 83.
    Y. S. Kim, J. H. Lee, S.-K. Jerng, E. Kim, S. Seo, J. Jung, S.-H. Chun, Y. Seung, and J. Hong, “H 2 -free synthesis of monolayer graphene with controllable grain size by plasma enhanced chemical vapor deposition,” Nanoscale, 2013Google Scholar
  84. 84.
    J. Fan, T. Li, Y. Gao, J. Wang, H. Ding, H. Heng, Comprehensive study of graphene grown by chemical vapor deposition. J. Mater. Sci. Mater. Electron. 25(10), 4333–4338 (2014)Google Scholar
  85. 85.
    C. Miao, C. Zheng, O. Liang, Y. Xie, Chemical vapor deposition of graphene. Phys. Appl. Graph. Exp. 37–54 (2011)Google Scholar
  86. 86.
    S. Thiele, A. Reina, P. Healey, J. Kedzierski, P. Wyatt, P.L. Hsu, C. Keast, J. Schaefer, J. Kong, Engineering polycrystalline Ni films to improve thickness uniformity of the chemical-vapor-deposition-grown graphene films. Nanotechnology 21(1), 15601 (2009)Google Scholar
  87. 87.
    G. Nandamuri, S. Roumimov, R. Solanki, Chemical vapor deposition of graphene films. Nanotechnology 21(14), 145604 (2010)Google Scholar
  88. 88.
    A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. Van Tendeloo, A. Vanhulsel, C. Van Haesendonck, Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology 19(30), 305604 (2008)Google Scholar
  89. 89.
    L. Jiang, X. Lu, J. Xu, Y. Chen, G. Wan, Y. Ding, Free-standing microporous paper-like graphene films with electrodeposited PPy coatings as electrodes for supercapacitors. J. Mater. Sci. Mater. Electron. 1–8 (2014)Google Scholar
  90. 90.
    H.K. Jeong, J.D.C. Edward, G.H. Yong, L.C. Hun, Synthesis of few-layer graphene on a Ni substrate by using DC plasma enhanced chemical vapor deposition (PE-CVD). J. Korean Phys. Soc. 58(1), 53 (2011)Google Scholar
  91. 91.
    J.L. Qi, W.T. Zheng, X.H. Zheng, X. Wang, H.W. Tian, Relatively low temperature synthesis of graphene by radio frequency plasma enhanced chemical vapor deposition. Appl. Surf. Sci. 257(15), 6531–6534 (2011)Google Scholar
  92. 92.
    J.W. Suk, A. Kitt, C.W. Magnuson, Y. Hao, S. Ahmed, J. An, A.K. Swan, B.B. Goldberg, R.S. Ruoff, Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5(9), 6916–6924 (2011)Google Scholar
  93. 93.
    M.J. Allen, V.C. Tung, L. Gomez, Z. Xu, L.M. Chen, K.S. Nelson, C. Zhou, R.B. Kaner, Y. Yang, Soft transfer printing of chemically converted graphene. Adv. Mater. 21(20), 2098–2102 (2009)Google Scholar
  94. 94.
    L.L. Song, L. Ci, W. Gao, P.M.P.M. Ajayan, Transfer printing of graphene using gold film. ACS Nano 3(6), 1353–1356 (2009)Google Scholar
  95. 95.
    W. Regan, N. Alem, B. Alemán, B. Geng, C. Girit, L. Maserati, F. Wang, M. Crommie, A. Zettl, A direct transfer of layer-area graphene. Appl. Phys. Lett. 96(11), 113102 (2010)Google Scholar
  96. 96.
    P. Nemes-Incze, Z. Osváth, K. Kamarás, L.P. Biró, Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy. Carbon. (NY) 46(11), 1435–1442 (2008)Google Scholar
  97. 97.
    J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, The structure of suspended graphene sheets. Nature 446(7131), 60–63 (2007)Google Scholar
  98. 98.
    C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K.S. Novoselov, A.C. Ferrari, H. Harutyuyan, Rayleigh imaging of graphene and graphene layers. Nano Lett. 7(9), 2711–2717 (2007)Google Scholar
  99. 99.
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006)Google Scholar
  100. 100.
    M. Wall, Raman spectroscopy optimizes graphene characterization. Adv. Mater. Process. 35–38 (2012)Google Scholar
  101. 101.
    A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, P.C. Eklund, Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett. 6(12), 2667–2673 (2006)Google Scholar
  102. 102.
    G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112(22), 8192–8195 (2008)Google Scholar
  103. 103.
    H. Iwai, Roadmap for 22 nm and beyond (invited paper). Microelectron. Eng. 86(7–9), 1520–1528 (2009)Google Scholar
  104. 104.
    B. Streetman, S. Banerjee, in Solid State Electronic Devices (Prentice Hall Series in Solid State Physical Electronics). 2007Google Scholar
  105. 105.
    The International Technology Roadmap for Semiconductors. Available (Semiconductor Industry Association, 2011)
  106. 106.
    Y. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H. Chiu, A. Grill, P. Avouris, 100-GHz transistors from wafer-scale epitaxial graphene. Science 237, 662 (2010)Google Scholar
  107. 107.
    J.S. Moon, D. Curtis, M. Hu, D. Wong, C. Mcguire, P.M. Campbell, G. Jernigan, J.L. Tedesco, B. Vanmil, C. Eddy, D.K. Gaskill, Epitaxial-graphene RF field-effect transistors on Si-face 6H-SiC substrates. IEEE Electron. Device. Lett. 30(6), 650–652 (2009)Google Scholar
  108. 108.
    S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, S.K. Banerjee, Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric. Appl. Phys. Lett. 94(6), 062107 (2009)Google Scholar
  109. 109.
    X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, H. Dai, Room-temperature all-semiconducting Sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 100(20), 206803 (2008)Google Scholar
  110. 110.
    Y. Lu, B. Goldsmith, D.R. Strachan, J.H. Lim, Z. Luo, A.T.C. Johnson, High-On/Off-ratio graphene nanoconstriction field-effect transistor. Small 6(23), 2748–2754 (2010)Google Scholar
  111. 111.
    M.C. Lemme, T.J. Echtermeyer, M. Baus, H. Kurz, A graphene field-effect device. Electron. Device. Lett. IEEE 28(4), 282–284 (2007)Google Scholar
  112. 112.
    S. Vaziri, G. Lupina, C. Henkel, A.D. Smith, M. Ostling, J. Dabrowski, G. Lippert, W. Mehr, M.C. Lemme, A graphene-based hot electron transistor. Nano Lett. 13(4), 1435–1439 (2013)Google Scholar
  113. 113.
    M.C. Lemme, T.J. Echtermeyer, M. Baus, B.N. Szafranek, J. Bolten, M. Schmidt, T. Wahlbrink, H. Kurz, Mobility in graphene double gate field effect transistors. Solid State Electron. 52(4), 514–518 (2008)Google Scholar
  114. 114.
    F. Guinea, M. I. Katsnelson, A. K. Geim, Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys. 6(1), 30–33 (2010)Google Scholar
  115. 115.
    C. Coletti, C. Riedl, D.S. Lee, B. Krauss, L. Patthey, K. von Klitzing, J.H. Smet, U. Starke, Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping. Phys. Rev. B 81(23), 235401 (2010)Google Scholar
  116. 116.
    X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319(5867), 1229–1232 (2008)Google Scholar
  117. 117.
    M. Evaldsson, I. Zozoulenko, H. Xu, T. Heinzel, Edge-disorder-induced Anderson localization and conduction gap in graphene nanoribbons. Phys. Rev. B 1, 1–4 (2008)Google Scholar
  118. 118.
    Z. Chen, Y.-M. Lin, M.J. Rooks, P. Avouris, Graphene nano-ribbon electronics. Phys. E Low-Dimens Syst. Nanostruct. 40(2), 228–232 (2007)Google Scholar
  119. 119.
    L. Tapaszto, G. Dobrik, P. Lambin, L.P. Biro, Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nature. Nano 3(7), 397–401 (2008)Google Scholar
  120. 120.
    S.S. Datta, D.R. Strachan, S.M. Khamis, A.T.C. Johnson, Crystallographic etching of few-layer graphene. Nano Lett. 8(7), 1912–1915 (2008)Google Scholar
  121. 121.
    L. Ci, Z. Xu, L. Wang, W. Gao, F. Ding, K.F. Kelly, B.I. Yakobson, P.M. Ajayan, Controlled nanocutting of graphene. Nano Res. 1(2), 116–122 (2008)Google Scholar
  122. 122.
    J. Campos-Delgado, J.M. Romo-Herrera, X. Jia, D.A. Cullen, H. Muramatsu, Y.A. Kim, T. Hayashi, Z. Ren, D.J. Smith, Y. Okuno, T. Ohba, H. Kanoh, K. Kaneko, M. Endo, H. Terrones, M.S. Dresselhaus, M. Terrones, Bulk production of a new form of sp2 carbon: crystalline graphene nanoribbons. Nano Lett. 8(9), 2773–2778 (2008)Google Scholar
  123. 123.
    F. Schwierz, J.J. Liou, RF transistors: recent developments and roadmap toward terahertz applications. Solid State Electron. 51(8), 1079–1091 (2007)Google Scholar
  124. 124.
    Y. Wu, Y. Lin, A.A. Bol, K.A. Jenkins, F. Xia, D.B. Farmer, Y. Zhu, P. Avouris, High-frequency, scaled graphene transistors on diamond-like carbon. Nature 472(7341), 74–78 (2011)Google Scholar
  125. 125.
    L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K.L. Wang, Y. Huang, X. Duan, High-speed graphene transistors with a self-aligned nanowire gate. Nature 467(7313), 305–308 (2010)Google Scholar
  126. 126.
    L. Liao, J. Bai, R. Cheng, Y.-C. Lin, S. Jiang, Y. Huang, X. Duan, Top-gated graphene nanoribbon transistors with ultrathin high-k dielectrics. Nano Lett. 10(5), 1917–1921 (2010)Google Scholar
  127. 127.
    J.-H. Chen, C. Jang, S. Adam, M.S. Fuhrer, E.D. Williams, M. Ishigami, Charged-impurity scattering in graphene. Nature. Phys. 4(5), 377–381 (2008)Google Scholar
  128. 128.
    R.G. Gordon, Criteria for choosing transparent conductors. MRS Bull. 25(08), 52–57 (2000)Google Scholar
  129. 129.
    P. Matyba, H. Yamaguchi, G. Eda, K̇.M. Chhowalla, K̇̇.L. Edman, N.D. Robinson, M. Chhowalla, L. Edman, Graphene and mobile ions: the key to all-plastic, solution-processed light-emitting devices. ACS Nano 4(2), 637–642 (2010)Google Scholar
  130. 130.
    L. Jiang, X. Lu, X. Zheng, Copper/silver nanoparticle incorporated graphene films prepared by a low-temperature solution method for transparent conductive electrodes. J. Mater. Sci. Mater. Electron. 25(1), 174–180 (2014)Google Scholar
  131. 131.
    H. Kim, C.M. Gilmore, A. Piqué, J.S. Horwitz, H. Mattoussi, H. Murata, Z.H. Kafafi, D.B. Chrisey, Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices. J. Appl. Phys. 86, 6451–6461 (1999)Google Scholar
  132. 132.
    Y. Park, V. Choong, Y. Gao, B.R. Hsieh, C.W. Tang, Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy. Appl. Phys. Lett. 68(19), 2699–2701 (1996)Google Scholar
  133. 133.
    S.T. Lee, Z.Q. Gao, L.S. Hung, Metal diffusion from electrodes in organic light-emitting diodes. Appl. Phys. Lett. 75(10), 1404 (1999)Google Scholar
  134. 134.
    I.-M. Chan, T.-Y. Hsu, F.C. Hong, Enhanced hole injections in organic light-emitting devices by depositing nickel oxide on indium tin oxide anode. Appl. Phys. Lett. 81(10), 1899–1901 (2002)Google Scholar
  135. 135.
    J. Wu, M. Agrawal, H.A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans, Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 4(1), 43–48 (2010)Google Scholar
  136. 136.
    Q. Pei, A.J. Heeger, Operating mechanism of light-emitting electrochemical cells. Nat. Mater. 7, 167 (2008)Google Scholar
  137. 137.
    Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, W. Sun, Y. Chen, Organic photovoltaic devices based on a novel acceptor material: graphene. Adv. Mater. 20(20), 3924–3930 (2008)Google Scholar
  138. 138.
    J. Wu, H.A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans, Organic solar cells with solution-processed graphene transparent electrodes. Appl. Phys. Lett. 92(26), 263302 (2008)Google Scholar
  139. 139.
    N.M. Gabor, J.C.W. Song, Q. Ma, N.L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L.S. Levitov, P. Jarillo-Herrero, Hot carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011)Google Scholar
  140. 140.
    V.V. Cheianov, V. Fal’ko, B.L. Altshuler, The focusing of electron flow and a Veselago lens in graphene p–n junctions. Science 315(5816), 1252–1255 (2007)Google Scholar
  141. 141.
    V.V. Cheianov, V.I. Fal’ko, Selective transmission of Dirac electrons and ballistic magnetoresistance of n–p junctions in graphene. Phys. Rev. B 74(4), 41403 (2006)Google Scholar
  142. 142.
    S. Tanachutiwat, J.U. Lee, W. Wang, C.Y. Sung, Reconfigurable multi-function logic based on graphene p–n junctions. In Proceedings of the 47th Design Automation Conference on DAC 10, 2010, pp. 883–888Google Scholar
  143. 143.
    P. Atanasov, A. Kaisheva, I. Iliev, V. Razumas, J. Kulys, Glucose biosensor based on carbon black strips. Biosens. Bioelectron. 7(5), 361–365 (1992)Google Scholar
  144. 144.
    S. Timur, L. Della, N. Pazarlioˇ, R. Pilloton, A. Telefoncu, Screen printed graphite biosensors based on bacterial cells. Process. Biochem. 39, 1325–1329 (2004)Google Scholar
  145. 145.
    Y. Lin, F. Lu, Y. Tu, Z. Ren, Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett. 4, 191–195 (2004)Google Scholar
  146. 146.
    J. Wang, G. Liu, M.R. Jan, Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J. Am. Chem. Soc. 126(10), 3010–3011 (2004)Google Scholar
  147. 147.
    Y. Ohno, K. Maehashi, Y. Yamashiro, K. Matsumoto, Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. Nano Lett. 9, 2–6 (2009)Google Scholar
  148. 148.
    S. Mao, G. Lu, K. Yu, Z. Bo, J. Chen, Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates. Adv. Mater. 22(32), 3521–3526 (2010)Google Scholar
  149. 149.
    N. Mohanty, V. Berry, Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 8(12), 4469–4476 (2008)Google Scholar
  150. 150.
    R. Stine, J.T. Robinson, P.E. Sheehan, C.R. Tamanaha, Real-time DNA detection using reduced graphene oxide field effect transistors. Adv. Mater. 22(46), 5297–5300 (2010)Google Scholar
  151. 151.
    X. Dong, Y. Shi, W. Huang, P. Chen, L.-J. Li, Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv. Mater. 22(14), 1649–1653 (2010)Google Scholar
  152. 152.
    Y.-R. Kim, S. Bong, Y.-J. Kang, Y. Yang, R.K. Mahajan, J.S. Kim, H. Kim, Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens. Bioelectron. 25(10), 2366–2369 (2010)Google Scholar
  153. 153.
    Y. Hu, K. Wang, Q. Zhang, F. Li, T. Wu, L. Niu, Decorated graphene sheets for label-free DNA impedance biosensing. Biomaterials 33(4), 1097–1106 (2012)Google Scholar
  154. 154.
    Z. Tang, H. Wu, J.R. Cort, G.W. Buchko, Y. Zhang, Y. Shao, I.A. Aksay, J. Liu, Y. Lin, Constraint of DNA on functionalized graphene improves its biostability and specificity. Small 6(11), 1205–1209 (2010)Google Scholar
  155. 155.
    E. Engvall, P. Perlmann, Enzyme-linked immunosorbent assay, Elisa: III. Quantitation of specific antibodies by enzyme-labled anti-immunoglobulin in antigen-coated tubes. J. Immunol. 109, 129–135 (1972)Google Scholar
  156. 156.
    A. Bonanni, M. Pumera, Graphene platform for hairpin-DNA-based impedimetric genosensing. ACS Nano 5(3), 2356–2361 (2011)Google Scholar
  157. 157.
    A.H. Loo, A. Bonanni, M. Pumera, Impedimetric thrombin aptasensor based on chemically modified graphenes. Nanoscale 4(1), 143–147 (2012)Google Scholar
  158. 158.
    G. Lu, L.E. Ocola, J. Chen, Gas detection using low-temperature reduced graphene oxide sheets. Appl. Phys. Lett. 083111(2009), 8–11 (2012)Google Scholar
  159. 159.
    H. Li, Y. Anugrah, S.J. Koester, M. Li, Optical absorption in graphene integrated on silicon waveguides. Appl. Phys. Lett. 101(11), 111110 (2012)Google Scholar
  160. 160.
    B. Scharf, V. Perebeinos, J. Fabian, P. Avouris, Effects of optical and surface polar phonons on the optical conductivity of doped graphene. Phys. Rev. B 87(3), 35414 (2013)Google Scholar
  161. 161.
    N. Youngblood, C. Chen, S. Koester, M. Li, Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. arXiv Prepr. arXiv1409.6412, pp. 1–17, 2014Google Scholar
  162. 162.
    N. Haratipour, M. Robbins, S. Koester, Black phosphorus p-MOSFETs with high transconductance and nearly ideal subthreshold slope. arXiv Prepr. arXiv1409.8395, 55455, 2–4 (2014)Google Scholar
  163. 163.
    X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T.F. Heinz, K. Shepard, J. Hone, S. Assefa, D. Englund, Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 7(11), 883–887 (2013)Google Scholar
  164. 164.
    B. Jalali, S. Fathpour, Silicon photonics. Light. Technol. J. 24(12), 4600–4615 (2006)Google Scholar
  165. 165.
    Y. Vlasov, S. McNab, Losses in single-mode silicon-on-insulator strip waveguides and bends. Opt. Express 12(8), 1622–1631 (2004)Google Scholar
  166. 166.
    W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, R.G. Baets, Compact wavelength-selective functions in silicon-on-insulator photonic wires. Sel. Top. Quantum Electron. IEEE J. 12(6), 1394–1401 (2006)Google Scholar
  167. 167.
    E.J.H. Lee, K. Balasubramanian, R.T. Weitz, M. Burghard, K. Kern, Contact and edge effects in graphene devices. Nat. Nanotechnol. 3(8), 486–490 (2008)Google Scholar
  168. 168.
    F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y. Lin, J. Tsang, V. Perebeinos, P. Avouris, Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 9(3), 1039–1044 (2009)Google Scholar
  169. 169.
    J. Park, Y.H. Ahn, C. Ruiz-Vargas, Imaging of photocurrent generation and collection in single-layer graphene. Nano Lett. 9(5), 1742–1746 (2009)Google Scholar
  170. 170.
    X. Xu, N.M. Gabor, J.S. Alden, A.M. van der Zande, P.L. McEuen, Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10(2), 562–566 (2009)Google Scholar
  171. 171.
    M.C. Lemme, F.H.L. Koppens, A.L. Falk, M.S. Rudner, H. Park, L.S. Levitov, C.M. Marcus, Gate-activated photoresponse in a graphene p–n junction. Nano Lett. 11(10), 4134–4137 (2011)Google Scholar
  172. 172.
    A. Pospischil, M. Humer, M.M. Furchi, D. Bachmann, R. Guider, T. Fromherz, T. Mueller, CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photonics 7(11), 892–896 (2013)Google Scholar
  173. 173.
    T. Mueller, F. Xia, P. Avouris, Graphene photodetectors for high-speed optical communications. Nat. Photonics 4(5), 297–301 (2010)Google Scholar
  174. 174.
    M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A.M. Andrews, W. Schrenk, G. Strasser et al., Microcavity-integrated graphene photodetector. Nano Lett. 12(6), 2773–2777 (2012)Google Scholar
  175. 175.
    J. Yan, M.H. Kim, J.A. Elle, A.B. Sushkov, G.S. Jenkins, H.M. Milchberg, M.S. Fuhrer, H.D. Drew, Dual-gated bilayer graphene hot-electron bolometer. Nat. Nanotechnol. 7(7), 472–478 (2012)Google Scholar
  176. 176.
    L. Vicarelli, M.S. Vitiello, D. Coquillat, A. Lombardo, A.C. Ferrari, W. Knap, M. Polini, V. Pellegrini, A. Tredicucci, Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 11(10), 865–871 (2012)Google Scholar
  177. 177.
    S.J. Koester, M. Li, High-speed waveguide-coupled graphene-on-graphene optical modulators. Appl. Phys. Lett. 100(17), 171107 (2012)Google Scholar
  178. 178.
    A.J. Hong, E.B. Song, H.S. Yu, M.J. Allen, J. Kim, J.D. Fowler, J.K. Wassei, Y. Park, Y. Wang, J. Zou et al., Graphene flash memory. ACS Nano 5(10), 7812–7817 (2011)Google Scholar
  179. 179.
    H. Liu, J. Huang, C. Xiang, J. Liu, X. Li, In situ synthesis of SnO2 nanosheet/graphene composite as anode materials for lithium-ion batteries. J. Mater. Sci. Mater. Electron. 24(10), 3640–3645 (2013)Google Scholar
  180. 180.
    B. Meschi Amoli, J. Trinidad, A. Hu, Y.N. Zhou, B. Zhao, Highly electrically conductive adhesives using silver nanoparticle (Ag NP)-decorated graphene: the effect of NPs sintering on the electrical conductivity improvement. J. Mater. Sci. Mater. Electron. 26, 590–600 (2015)Google Scholar
  181. 181.
    J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead, P.L. McEuen, Electromechanical resonators from graphene sheets. Science 490, 2012 (2007)Google Scholar
  182. 182.
    X. Tao, Q. Hong, T. Xu, F. Liao, Highly efficient photocatalytic performance of graphene–Ag3VO4 composites. J. Mater. Sci. Mater. Electron. 25(8), 3480–3485 (2014)Google Scholar
  183. 183.
    G. Hwang, J.J.C. Acosta, E. Vela, S. Haliyo, S. Regnier, Graphene as thin film infrared optoelectronic sensor. In International Symposium on Optomechatronic Technologies (ISOT) 2009, Istanbul, pp. 169–174 (2009)Google Scholar
  184. 184.
    V. Ryzhii, M. Ryzhii, N. Ryabova, V. Mitin, T. Otsuji, Terahertz and infrared detectors based on graphene structures. Infrared Phys. Technol. 54(3), 302–305 (2011)Google Scholar
  185. 185.
    M.C. Lemme, Current status of graphene transistors. Solid State Phenom. 156–158, 499–509 (2009)Google Scholar
  186. 186.
    A.H.C. Neto, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.ECE Department, Engineering FacultyUniversity of TehranTehranIran
  2. 2.School of Information and Communication TechnologyKTH Royal Institute of TechnologyKistaSweden

Personalised recommendations