Effect of Sm3+ on dielectric and magnetic properties of Y3Fe5O12 nanoparticles

  • K. Sadhana
  • S. R. Murthy
  • K. PraveenaEmail author


The Sm3+ doped Y3−xSmxFe5O12 (x = 0–3) nanopowders were prepared using modified sol–gel route. The crystalline structure and morphology was confirmed by X-ray diffraction and atomic force microscopy. The nanopowders were sintered at 950 °C/90 min using microwave sintering method. The lattice parameters and density of the samples were increased with an increase of Sm3+ concentration. The room temperature dielectric (ε′ and ε″) and magnetic (μ′ and μ″) properties were measured in the frequency range up to 20 GHz. The room temperature magnetization studies were carried out using Vibrating sample magnetometer using filed of 1.5 T. Results of VSM show that the saturation and remnant magnetization of Y3−xSmxFe5O12 (0–3) decreases on increasing the Sm concentration (x). The low values of magnetic (μ′ and μ″) properties makes them a good candidates for microwave devices, which can be operated in the high frequency range.


Saturation Magnetization Samarium Yttrium Iron Garnet YFeO3 Squareness Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Dr. K. Praveena is thankful to University Grants commission, New Delhi for awarding Dr. D.S. Kothari Post-Doctoral Fellowship.


  1. 1.
    A.V. Nazarov, D. Menard, J.J. Green, C.E. Patton, G.M. Argentina, H.J. Van Hook, J. Appl. Phys. 94, 7227 (2003)CrossRefGoogle Scholar
  2. 2.
    T. Aichele, A. Lorenz, R. Hergt, P. Gornet, Cryst. Res. Technol. 38, 575 (2003)CrossRefGoogle Scholar
  3. 3.
    P. Vaqueiro, M.A. López-Quintela, Chem. Mater. 9, 2836 (1997)CrossRefGoogle Scholar
  4. 4.
    Y.B. Lee, K.P. Chae, J. Phys. Chem. Solids 62, 1335 (2001)CrossRefGoogle Scholar
  5. 5.
    S. Thongmee, P. Winotai, Solid State Commun. 109, 471 (1999)CrossRefGoogle Scholar
  6. 6.
    M. Ristic, I. Nowik, S. Popovic, I. Felner, S. Music, Mater. Lett. 57, 2584 (2003)CrossRefGoogle Scholar
  7. 7.
    P. Grosseau, A. Bachiorrini, B. Guilhit, Powder Technol. 93, 247 (1997)CrossRefGoogle Scholar
  8. 8.
    P. Vaqueiro, M.P. Crosnier Lopez, M.A. Lopez Quintela, J. Solid State Chem. 126, 161 (1996)CrossRefGoogle Scholar
  9. 9.
    T.C. Mao, J.C. Chen, J. Magn. Magn. Mater. 302, 74 (2006)CrossRefGoogle Scholar
  10. 10.
    C.S. Kim, Y.R. Uhm, S. Kim, J.G. Lee, J. Magn. Magn. Mater. 215–216, 551 (2000)CrossRefGoogle Scholar
  11. 11.
    A. Leleckaite, A. Kareiva, Opt. Mater. 26, 123 (2004)CrossRefGoogle Scholar
  12. 12.
    J.F. Dillon Jr., Phys. Rev. 105, 759 (1957)CrossRefGoogle Scholar
  13. 13.
    F. Bertaut, F. Forrat, C. R. 242, 382 (1956)Google Scholar
  14. 14.
    G.P. Rodrigue, J.E. Pippin, W.P. Wolf, C.L. Hogan, Sci. Rep. 11, Gordon McKay Laboratory, Harvard (1957)Google Scholar
  15. 15.
    M.H. Sirvetz, J.E. Zneimer, J. Appl. Phys. 29, 431 (1958)CrossRefGoogle Scholar
  16. 16.
    A. Kumar, K.L. Yadav, J Phys. Chem. Solid 72, 1189 (2011)CrossRefGoogle Scholar
  17. 17.
    R. Gedye, F. Smith, K. Westaway, H. Ali, L. Baldisera, L. Laberge, J. Rousell, Tetra Lett. 27, 279 (1986)CrossRefGoogle Scholar
  18. 18.
    R.J. Giguere, T.L. Bray, S.M. Duncan, G. Majetich, Tetra Lett. 27, 4945 (1986)CrossRefGoogle Scholar
  19. 19.
    B.D. Cullity, Elements of X-ray Diffraction, 2nd edn. (Addison-Wesley, Reading, MA, 1978)Google Scholar
  20. 20.
    R.D. Sachez, J. Rivas, P. Vaqueiro, M.A. Lopez Quintela, J. Magn. Magn. Mater. 247, 92 (2002)CrossRefGoogle Scholar
  21. 21.
    S. Lowell, J.E. Shields, M.A. Thomas, M. Thommes, Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density (Kluwer, Dordrecht/Boston/London, 2004)CrossRefGoogle Scholar
  22. 22.
    S. Eckel, A.O. Sushkov, S.K. Lamoreaux, Phys. Rev. B 79, 014422 (2009)CrossRefGoogle Scholar
  23. 23.
    A.M. Nicolson, G.F. Ross, IEEE Trans. Instrum. Meas. 19, 377 (1970)CrossRefGoogle Scholar
  24. 24.
    W.B. Weir, Proc. IEEE 62, 33 (1974)CrossRefGoogle Scholar
  25. 25.
    S.W. Phang, T. Hino, M.H. Abdullah, N. Karamoto, Mater. Chem. Phys. 104, 327 (2007)CrossRefGoogle Scholar
  26. 26.
    S. Geller, Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. 125, 1 (1967)CrossRefGoogle Scholar
  27. 27.
    K.R. Whittle, G.R. Lumpkin, F.J. Berry, G. Oates, K.L. Smith, S. Yudintsev, N.J. Zaluzec, J. Solid State Chem. 180, 785 (2007)CrossRefGoogle Scholar
  28. 28.
    D.A. Dler, Solid State Phys. 1, 21 (1968)Google Scholar
  29. 29.
    K. Ishino, Y. Narumiya, Ceram. Bull. 66, 1469 (1987)Google Scholar
  30. 30.
    D.A. Dimitrov, G.M. Wysin, Magnetic properties of spherical fcc clusters with radial surface anisotropy. Phys. Rev. B 51, 11947 (1995)CrossRefGoogle Scholar
  31. 31.
    V.P. Shilov, J.C. Bacri, F. Gazeau, F. Gendron, R. Perzynski, Y.L. Raikher, J. Appl. Phys. 85(6642), 1–6 (1999)Google Scholar
  32. 32.
    M. Ristic, I. Felner, I. Nowik, S. Popovic, I. Czako Nagy, S. Music, J. Alloys Compd. 308, 301 (2000)Google Scholar
  33. 33.
    T.C. Mao, J.C. Chen, J. Magn. Magn. Mater. 302, 74 (2006)CrossRefGoogle Scholar
  34. 34.
    Z.J. Cheng, H. Yang, Phys. E 39, 198 (2007)CrossRefGoogle Scholar
  35. 35.
    Z. Cheng, H. Yang, L. Yu, W. Xu, J. Mater. Sci. Mater. Electron. 19, 442 (2008)CrossRefGoogle Scholar
  36. 36.
    B. Dong, H. Yang, L. Yu, Y. Cui, W. Jin, S. Feng, J. Mater. Sci. 42, 5003 (2007)CrossRefGoogle Scholar
  37. 37.
    H. Xu, H. Yang, J. Mater. Sci. Mater. Electron. 19, 589 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of PhysicsUniversity College of Science, Osmania UniversitySaifabad, HyderabadIndia
  2. 2.Department of PhysicsUniversity College of Science, Osmania UniversityHyderabadIndia
  3. 3.Materials Research CentreIndian Institute of ScienceBangaloreIndia

Personalised recommendations