Effect of polyethylenimine on electrophoretic deposition of TiO2 nanoparticles in alternating current electric field

  • Mahsa Navidirad
  • Babak Raissi
  • Reza Riahifar
  • Maziar Sahba Yaghmaee
  • Asghar Kazemzadeh


In this work, AC electric field was applied to deposit TiO2 nanoparticles dispersed in Acetone on coplanar electrodes. The experiments were performed in presence and absence of an additive, polyethylenimine (PEI), at frequencies of 1 Hz and 10 kHz. It was revealed that deposition pattern changed dramatically by addition of PEI which makes particles to fill the inter electrode gap at both frequencies. When PEI is added, particles show different behavior. While they tend to fill the gap randomly at 1 Hz, they form chainlike pattern at 10 kHz. Chain formation of particles in the gap indicates presence of dielectrophoretic (DEP) forces. The ability of particles to polarize in both suspensions at 10 kHz are calculated by a multi-shell model in order to find DEP force. According to this model, the polarizability for particles in the suspension with PEI is more than the other, so DEP forces applied more strongly on them and promotes chain formation.


Zeta Potential Electrical Double Layer TiO2 Nanoparticles Ceramic Particle Deposition Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. Ammam, Electrophoretic deposition under modulated electric fields: a review. RSC Adv. 2, 7633–7646 (2012)CrossRefGoogle Scholar
  2. 2.
    I. Corni, M.P. Ryan, A.R. Boccaccini, Electrophoretic deposition: from traditional ceramics to nanotechnology. J. Eur. Ceram. Soc. 28, 1353–1367 (2008)CrossRefGoogle Scholar
  3. 3.
    B. Neirinck, J. Fransaer, O.V.D. Biest, J. Vleugels, Aqueous electrophoretic deposition in asymmetric AC electric fields (AC–EPD). Electrochem. Commun. 11, 57–60 (2009)CrossRefGoogle Scholar
  4. 4.
    A. Chávez-Valdez, M. Herrmann, A. Boccaccini, Alternating current electrophoretic deposition (EPD) of TiO2 nanoparticles in aqueous suspensions. J. Colloid Interface Sci. 375, 102–105 (2012)CrossRefGoogle Scholar
  5. 5.
    L. Besra, T. Uchikoshi, T.S. Suzuki, Y. Sakka, Bubble-free aqueous electrophoretic deposition (EPD) by pulse-potential application. J. Am. Ceram. Soc. 91, 3154–3159 (2008)CrossRefGoogle Scholar
  6. 6.
    A. Nold, R. Clasen, Bubble-free electrophoretic shaping from aqueous suspension with micro point-electrode. J. Eur. Ceram. Soc. 30, 2971–2975 (2010)CrossRefGoogle Scholar
  7. 7.
    V. Ozhukil Kollath, Q. Chen, R. Closset, J. Luyten, K. Traina, S. Mullens, A.R. Boccaccini, R. Cloots, AC vs. DC electrophoretic deposition of hydroxyapatite on titanium. J. Eur. Ceram. Soc. 33, 2715–2721 (2013)CrossRefGoogle Scholar
  8. 8.
    T. Yoshioka, A. Chávez-Valdez, J.A. Roether, D.W. Schubert, A.R. Boccaccini, AC electrophoretic deposition of organic–inorganic composite coatings. J. Colloid Interface Sci. 392, 167–171 (2013)CrossRefGoogle Scholar
  9. 9.
    R. Riahifar, B. Raissi, E. Marzbanrad, C. Zamani, Effect of parameters on deposition pattern of ceramic nanoparticles in non-uniform AC electric field. J. Mater. Sci.: Mater. Electron. 22, 40–46 (2011)Google Scholar
  10. 10.
    A.S. Dukhin, S.S. Dukhin, Aperiodic capillary electrophoresis method using an alternating current electric field for separation of macromolecules. Electrophoresis 26, 2149–2153 (2005)CrossRefGoogle Scholar
  11. 11.
    S. Ghashghaie, E. Marzbanrad, B. Raissi, C. Zamani, R. Riahifar, Effect of low frequency electric field parameters on chain formation of ZnO nanoparticles for gas sensing applications. J. Am. Ceram. Soc. 95, 1843–1850 (2012)CrossRefGoogle Scholar
  12. 12.
    R. Riahifar, E. Marzbanrad, B. Raissi, C. Zamani, M. Kazemzad, A. Aghaei, Sorting ZnO particles of different shapes with low frequency AC electric fields. Mater. Lett. 65, 632–635 (2011)CrossRefGoogle Scholar
  13. 13.
    R. Riahifar, B. Raissi, E. Marzbanrad, C. Zamani, AC electrophoresis, a new technique for deposition of ceramic nanoparticles; introduction, application and mechanism. Key Eng. Mater. 507, 41–45 (2012)CrossRefGoogle Scholar
  14. 14.
    J. Esmaeilzadeh, S. Ghashghaie, B. Raissi, E. Marzbanrad, C. Zamani, R. Riahifar, Dispersant-assisted low frequency electrophoretically deposited TiO2 nanoparticles in non-aqueous suspensions for gas sensing applications. Ceram. Int. 38, 5613–5620 (2012)CrossRefGoogle Scholar
  15. 15.
    S. Mathur, B.M. Moudgil, Adsorption mechanism (s) of poly (ethylene oxide) on oxide surfaces. J. Colloid Interface Sci. 196, 92–98 (1997)CrossRefGoogle Scholar
  16. 16.
    X. Zhu, T. Uchikoshi, T.S. Suzuki, Y. Sakka, Effect of polyethylenimine on hydrolysis and dispersion properties of aqueous Si3N4 suspensions. J. Am. Ceram. Soc. 90, 797–804 (2007)CrossRefGoogle Scholar
  17. 17.
    X. Zhu, F. Tang, T.S. Suzuki, Y. Sakka, Role of the initial degree of ionization of polyethylenimine in the dispersion of silicon carbide nanoparticles. J. Am. Ceram. Soc. 86, 189–191 (2003)CrossRefGoogle Scholar
  18. 18.
    F. Tang, T. Uchikoshi, K. Ozawa, Y. Sakka, Effect of polyethylenimine on the dispersion and electrophoretic deposition of nano-sized titania aqueous suspensions. J. Eur. Ceram. Soc. 26, 1555–1560 (2006)CrossRefGoogle Scholar
  19. 19.
    J. Esmaeilzadeh, S. Ghashghaie, B.R. Dehkordi, R. Riahifar, Role of the electric field affected zone (EFAZ) on the electrophoretic deposition of TiO2 nanoparticles under symmetric low-frequency AC electric fields. J. Phys. Chem. B 117, 1660–1663 (2012)CrossRefGoogle Scholar
  20. 20.
    P.C. Hiemenz, R. Rajagopalan, Principles of Colloid and Surface Chemistry (Marcel Dekker Inc., New York, 1997)Google Scholar
  21. 21.
    R. Riahifar, E. Marzbanrad, B.R. Dehkordi, C. Zamani, Role of substrate potential on filling the gap between two planar parallel electrodes in electrophoretic deposition. Mater. Lett. 64, 559–561 (2010)CrossRefGoogle Scholar
  22. 22.
    B. Techaumnat, S. Hamada, T. Takuma, Electric field behavior near a zero-angle contact point in the presence of surface conductivity, IEEE Trans. Dielectr. Electr. Insul. 9(4) (2002)Google Scholar
  23. 23.
    H. Morgan, N.G. Green, AC Electrokinetics: Colloids and Nanoparticles (Research Studies Press, Baldock, Hertfordshire, 2003)Google Scholar
  24. 24.
    T.B. Jones, Electromechanics of Particles (Cambridge University Press, Cambridge, 1995)CrossRefGoogle Scholar
  25. 25.
    K.V.I.S. Kaler, T.B. Jones, R. Paul, Low-frequency micromotion of DEP-levitated plant protoplasts, I. J. Colloid Interface Sci. 175, 108–117 (1995)CrossRefGoogle Scholar
  26. 26.
    T.N. Tombs, T.B. Jones, Effect of moisture on the dielectrophoretic spectra of glass spheres, IEEE Trans. Ind Appl. 29(2) (1993)Google Scholar
  27. 27.
    D.R. Lide, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2004)Google Scholar
  28. 28.
    F. Fahrenberger, Z. Xu, C. Holm, Simulation of electric double layers around charged colloids in aqueous solution of variable permittivity, eprint arXiv:1312.5443 (2013)Google Scholar
  29. 29.
    M. Hughes, Nanoelectromechanics in Engineering and Biology (CRC Press, Boca Raton, FL, 2003)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mahsa Navidirad
    • 1
  • Babak Raissi
    • 1
  • Reza Riahifar
    • 1
  • Maziar Sahba Yaghmaee
    • 1
  • Asghar Kazemzadeh
    • 1
  1. 1.Ceramic DepartmentMaterials and Energy Research CenterMeshkindasht, KarajIran

Personalised recommendations