Formation and evolution of intermetallic layer structures at SAC305/Ag/Cu and SAC0705-Bi-Ni/Ag/Cu solder joint interfaces after reflow and aging

  • Yang Liu
  • Joost Meerwijk
  • Liangliang Luo
  • Honglin Zhang
  • Fenglian Sun
  • Cadmus A. Yuan
  • Guoqi Zhang


In this paper, the formation and evolution characteristics of the intermetallic compounds (IMCs) in SAC305/Ag/Cu and SAC0705-3.5Bi-0.05Ni/Ag/Cu solder during reflow and 150 °C isothermal aging are investigated. Experimental results indicate that Ag3Sn forms as soon as the SAC305/Ag/Cu solder spheres wetted to the substrates. With increased soldering time, the Ag layer on a Cu substrate dissolved into the molten SAC305 solder and the interfacial IMC consisted of Cu6Sn5. The Ag layers show a faster dissolution rate in SAC0705-3.5Bi-0.05Ni/Ag/Cu than in SAC305/Ag/Cu, which is attributed to a larger concentration gradient of Ag for SAC0705-3.5Bi-0.05Ni/Ag/Cu. The formation and coarsening of a Cu3Sn layer between Cu6Sn5 and the Cu substrate caused the formation of Kirkendall voids and delamination during aging in the SAC305/Ag/Cu. A small addition of Ni in the solder significantly suppressed the formation of a Cu3Sn layer in the SAC0705-3.5Bi-0.05Ni/Ag/Cu, resulting in fewer voids in the soldering interface.


Solder Joint Solder Alloy Isothermal Aging Molten Solder Bulk Solder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank the Chinese State Key Laboratory of Solid State Lighting for providing the financial and equipment support. Thanks to research and scientific foundation of Heilongjiang education department (No. 12541112) and College Students’ innovative experiment project of Heilongjiang province (No. 201310214035).


  1. 1.
    L.C. Tsao, J. Alloys Compd. 509(5), 2326 (2011)CrossRefGoogle Scholar
  2. 2.
    M. Sona, K.N. Prabhu, J. Mater. Sci.: Mater. Electron. 25(3), 1446 (2014)Google Scholar
  3. 3.
    H.R. Kotadia, O. Mokhtari, M.P. Clode, M.A. Green, S.H. Mannan, J. Alloys Compd. 511(1), 176 (2012)CrossRefGoogle Scholar
  4. 4.
    D.A.A. Shnawah, M.F.B.M. Sabri, I.A. Badruddin, S. Said, Microelectron. Int. 29(1), 47 (2012)CrossRefGoogle Scholar
  5. 5.
    A.A. El-Daly, A.E. Hammad, G.S. Al-Ganainy, M. Ragab, Mater. Sci. Eng. A 608(7), 130 (2014)CrossRefGoogle Scholar
  6. 6.
    A.E. Hammad, Mater. Des. 52(12), 663 (2013)CrossRefGoogle Scholar
  7. 7.
    F. Sun, P. Hochstenbach, W.D. Van Driel, G.Q. Zhang, Microelectron. Reliab. 48(8), 1167 (2008)CrossRefGoogle Scholar
  8. 8.
    Y.W. Yen, W.T. Chou, Y. Tseng, C. Lee, C.L. Hsu, J. Electron. Mater. 37(1), 73 (2008)CrossRefGoogle Scholar
  9. 9.
    P.J. Shang, Z.Q. Liu, D.X. Li, J.K. Shang, Phil. Magn. Lett. 91(6), 410 (2011)CrossRefGoogle Scholar
  10. 10.
    T. Laurila, V. Vuorinen, J.K. Kivilahti, Mater. Sci. Eng., R 49(1), 1 (2005)CrossRefGoogle Scholar
  11. 11.
    J.W. Yoon, S.B. Jung, J. Mater. Sci. 39(13), 4211 (2004)CrossRefGoogle Scholar
  12. 12.
    G.Y. Jang, J.W. Lee, J.G. Duh, J. Electron. Mater. 33(10), 1103 (2004)CrossRefGoogle Scholar
  13. 13.
    H. Wang, F. Gao, X. Ma, Y. Qian, Scripta Mater. 55(9), 823 (2006)CrossRefGoogle Scholar
  14. 14.
    J.Y. Kim, JYu. Appl, Phys. Lett. 92(9), 092109 (2008)Google Scholar
  15. 15.
    C.Y. Liu, J.T. Chen, Y.C. Chuang, L. Ke, S.J. Wang, Appl. Phys. Lett. 90(11), 112114 (2007)CrossRefGoogle Scholar
  16. 16.
    K. Zeng, R. Stierman, T.C. Chiu, D. Edwards, K. Ano, K.N. Tu, J. Appl. Phys. 97(2), 024508 (2004)CrossRefGoogle Scholar
  17. 17.
    S.H. Kim, J. Yu, Scripta Mater. 69(3), 254 (2013)CrossRefGoogle Scholar
  18. 18.
    Y.Q. Wu, S.D. McDonald, J. Read, H. Huang, K. Nogita, Scripta Mater. 68(8), 595 (2013)CrossRefGoogle Scholar
  19. 19.
    M. Berthou, P. Retailleau, H. Frémont, A. Guédon-Gracia, C. Jéphos-Davennel, Microelectron. Reliab. 49(9), 1267 (2009)CrossRefGoogle Scholar
  20. 20.
    M. Huang, O.G. Yeow, C.Y. Poo, T. Jiang, IEEE Trans. Comp. Pack. Tech. 31(4), 767 (2008)CrossRefGoogle Scholar
  21. 21.
    L. Xu, J.H.L. Pang, F. Ren, K.N. Tu, J. Electron. Mater. 35(12), 2166 (2006)Google Scholar
  22. 22.
    F.L. Lin. Light emitting diode module: U.S. Patent Application 11/808,206. 2007-6-7Google Scholar
  23. 23.
    H.J. Hahm, S.Y. Han, D.Y. Kim, H.S. Kim, D.H. Kim, D.H. Kim, Park YS. Light emitting module: U.S. Patent 8,132,935. 2012-3-13Google Scholar
  24. 24.
    P.T. Vianco, J.J. Martin, R.D. Wright, P.F. Hlava, Metal Mater. Trans. A 38(10), 2488 (2007)CrossRefGoogle Scholar
  25. 25.
    K.J. Chen, F.Y. Hung, T.S. Lui, L.H. Chen, D.W. Qiu, T.L. Chou, Microelectron. Eng. 116(3), 33 (2014)CrossRefGoogle Scholar
  26. 26.
    U. Kattner, W.J. Boettinger, J. Electron. Mater. 23(7), 603 (1994)CrossRefGoogle Scholar
  27. 27.
    V.I. Dybkov, J. Mater. Sci. 28(23), 6371 (1993)CrossRefGoogle Scholar
  28. 28.
    Y. Liu, F. Sun, X. Li, J. Mater. Sci.: Mater. Electron. 25(6), 2627 (2014)Google Scholar
  29. 29.
    D.W. Henderson, T. Gosselin, A. Sarkhel, S.K. Kang, W.K. Choi, D.Y. Shih, K.J. Puttlitz, J. Mater. Res. 17(11), 2775 (2002)CrossRefGoogle Scholar
  30. 30.
    S.K. Kang, D.Y. Shih, N.Y. Donald, W. Henderson, T. Gosselin, A. Sarkhel, W.K. Choi, JOM 55(6), 61 (2003)CrossRefGoogle Scholar
  31. 31.
    Y. Liu, F. Sun, H. Zhang, P. Zou, J. Mater. Sci.: Mater. Electron. 23(9), 1705 (2012)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yang Liu
    • 1
    • 2
    • 4
  • Joost Meerwijk
    • 5
  • Liangliang Luo
    • 4
  • Honglin Zhang
    • 1
  • Fenglian Sun
    • 1
  • Cadmus A. Yuan
    • 2
    • 3
    • 4
  • Guoqi Zhang
    • 3
    • 5
  1. 1.School of Material Science and EngineeringHarbin University of Science and TechnologyHarbinPeople’s Republic of China
  2. 2.Beijing Research CentreDelft University of TechnologyBeijingPeople’s Republic of China
  3. 3.Institute of SemiconductorsChinese Academy of SciencesBeijingPeople’s Republic of China
  4. 4.State Key Laboratory of Solid State LightingChangzhouPeople’s Republic of China
  5. 5.DIMES Center for SSL TechnologiesDelft University of TechnologyDelftNetherlands

Personalised recommendations