Oxygen vacancy induced dielectric relaxation studies in Bi4−xLaxTi3O12 (x = 0.0, 0.3, 0.7, 1.0) ceramics

  • Sumit Bhardwaj
  • Joginder Paul
  • Subhash Chand
  • K. K. Raina
  • Ravi Kumar
Article

Abstract

In the present work, oxygen vacancy induced dielectric relaxations were studied for Lanthanum substituted Bi4−xLaxTi3O12 (x = 0.0, 0.3, 0.7, 1.0) ceramics. X-ray diffraction patterns reveal the formation of single phase orthorhombic structure in all the samples. The partial substitutions of lanthanum ions were found to significantly influence the grain morphology of the sintered ceramics. Temperature dependent dielectric measurements indicate a well-defined dielectric constant peak around 150 °C, with strong frequency dispersion. This dielectric anomaly was attributed to the Maxwell–Wagner space charge relaxation phenomenon related to oxygen vacancies. The space charges related to oxygen vacancies were confirmed by annealing the samples in oxidative atmosphere. The electrical modulus analysis shows that the samples exhibit non-Debye type relaxation behavior. Doubly ionized oxygen vacancies were found to influence the relaxation behaviour at higher temperature. The observed dielectric relaxation as a function of temperature and frequency were explained on the basis of oxygen vacancies.

References

  1. 1.
    A. Peláiz-Barrancoa, M.E. Mendozab, F. Calderón-Piñara, O. García-Zaldívara, R. López-Nodac, J. de los Santos-Guerrad, J. Antonio Eirasd, Solid State Commun. 144, 425 (2007)CrossRefGoogle Scholar
  2. 2.
    J.F. Scott, C.A. Araujo, Science 246, 1400 (1989)CrossRefGoogle Scholar
  3. 3.
    T. Jardiel, A.C. Caballero, M. Villegas, J. Ceram. Soc. Jpn. 116, 511 (2008)CrossRefGoogle Scholar
  4. 4.
    C.W. Ahn, H. Lee, S.H. Kang, W. Kim, M.S. Choi, J.S. Lee, H.W. Kim, B.M. Jin, J. Electroceram. 21, 847 (2008)CrossRefGoogle Scholar
  5. 5.
    K. Ruan, X. Chen, T. Lian, G. Wu, D. Bao, J. Appl. Phys. 103, 074101 (2008)CrossRefGoogle Scholar
  6. 6.
    K. Ruan, X. Chen, T. Lian, G. Wu, D. Bao, J. Appl. Phys. 103, 086104 (2008)CrossRefGoogle Scholar
  7. 7.
    A.Q. Jiang, G.H. Li, L.D. Zhang, J. Appl. Phys. 83, 4878 (1998)CrossRefGoogle Scholar
  8. 8.
    S. Kumar, K.B.R. Varma, J. Phys. D Appl. Phys. 42, 075405 (2009)CrossRefGoogle Scholar
  9. 9.
    J. Zhu, X.B. Chan, W.P. Lu, X.Y. Mao, R. Hui, Appl. Phys. Lett. 83, 1818 (2003)CrossRefGoogle Scholar
  10. 10.
    A.Z. Simoes, C.S. Riccardi, L.S. Cavalcante, E. Longo, J.A. Varela, B. Mizaikoff, D.W. Hess, J. Appl. Phys. 101, 084112 (2007)CrossRefGoogle Scholar
  11. 11.
    B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, W. Jo, Nature 401, 682 (1999)CrossRefGoogle Scholar
  12. 12.
    C. Elissalde, J. Ravez, J. Mater. Chem. 11, 1957 (2001)CrossRefGoogle Scholar
  13. 13.
    H.S. Shulman, D. Damjanovic, N. Setter, J. Am. Ceram. Soc. 83, 528 (2000)CrossRefGoogle Scholar
  14. 14.
    Y.Y. Yao, C.H. Song, P. Bao, D. Su, X.M. Lu, J.S. Zhu, Y.N. Wang, J. Appl. Phys. 95, 3126 (2004)CrossRefGoogle Scholar
  15. 15.
    J.S. Kim, W. Kim, J. Electroceram. 16, 373 (2006)CrossRefGoogle Scholar
  16. 16.
    Y. Wu, G. Cao, Appl. Phys. Lett. 75, 2650 (1999)CrossRefGoogle Scholar
  17. 17.
    C. Ang, Z. Yu, L.E. Cross, Phys. Rev. B 62, 228 (2000)CrossRefGoogle Scholar
  18. 18.
    Z. Zhu, K. Jiang, G.J. Davies, G. Li, Q. Yin, S. Sheng, Smar. Mater. Struct. 15, 1249 (2006)CrossRefGoogle Scholar
  19. 19.
    A.Q. Jiang, Z.X. Hu, L.D. Zhang, Appl. Phys. Lett. 74, 114 (1999)CrossRefGoogle Scholar
  20. 20.
    J.H. Ambrus, C.T. Moyniham, P.B. Macedo, J. Phys. Chem. 76, 3287 (1972)CrossRefGoogle Scholar
  21. 21.
    R.D. Shannon, Acta Crystallogr. A A32, 751 (1976)CrossRefGoogle Scholar
  22. 22.
    Z.Z. Lazarevic, N.Z. Romcevic, J.D. Bobic, M.J. Romcevic, Z. Dohcevic-Mitrovic, B.D. Stojanovic, J. Alloys Compd. 486, 848 (2009)CrossRefGoogle Scholar
  23. 23.
    X. Chou, J. Zhai, H. Jiang, X. Yao, J. Appl. Phys. 102, 084106 (2007)CrossRefGoogle Scholar
  24. 24.
    Y. Kan, X. Jin, G. Zhang, P. Wang, Y.B. Cheng, D. Yan, J. Mater. Chem. 14, 3566 (2004)CrossRefGoogle Scholar
  25. 25.
    V.B. Santos, J.C. M’Peko, M. Mir, V.R. Mastelaro, A.C. Hernandes, J. Eur. Ceram. Soc. 29, 751 (2009)CrossRefGoogle Scholar
  26. 26.
    P. Lunkenheimer, V. Bobnar, A.V. Pronin, A.I. Ritus, A.A. Volkov, A. Loidl, Phys. Rev. B 66, 052105 (2002)CrossRefGoogle Scholar
  27. 27.
    J.C. Maxwell, Electricity and Magnetism (Oxford University Press, Oxford, 1873), vol. 1, sec. 328Google Scholar
  28. 28.
    H. Neumann, G. Arlt, Ferroelectrics 69, 179 (1986)CrossRefGoogle Scholar
  29. 29.
    Zhi. Yua, Chen. Ang, J. Appl. Phys. 91, 794 (2002)CrossRefGoogle Scholar
  30. 30.
    I.M. Hodge, M.D. Ingram, A.R. West, J. Electroanal. Chem. 74, 125 (1976)CrossRefGoogle Scholar
  31. 31.
    A.H. Elsayed, A.M. Haffz, Egypt. J. Solids 28, 53 (2005)Google Scholar
  32. 32.
    M. Prabu, S. Selvasekarapandian, Mat. Chem. Phys. 134, 366 (2012)CrossRefGoogle Scholar
  33. 33.
    J. Liu, C.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, J. Chem. Phys. 119, 2812 (2003)CrossRefGoogle Scholar
  34. 34.
    S.K. Bera, S.K. Barik, R.N.P. Choudhary, P.K. Bajpai, Bull. Mater. Sci. 35, 47 (2012)CrossRefGoogle Scholar
  35. 35.
    Lily, K. Kumari, K. Prasad, R.N.P. Choudhary, J. Alloys Compd. 453, 325 (2008)CrossRefGoogle Scholar
  36. 36.
    P.S. Anantha, K. Hariharan, Mater. Sci. Eng. B 121, 12 (2005)CrossRefGoogle Scholar
  37. 37.
    W. Li, K. Chen, Y. Yao, J. Zhu, Y. Wang, Appl. Phys. Lett. 85, 4717 (2004)CrossRefGoogle Scholar
  38. 38.
    S.K. Rout, A. Hussian, J.S. Lee, I.W. Kim, S.I. Woo, J. Alloys Compd. 477, 706 (2009)CrossRefGoogle Scholar
  39. 39.
    R. Moos, K.H. Hardtl, J. Appl. Phys. 80, 393 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Sumit Bhardwaj
    • 1
  • Joginder Paul
    • 1
  • Subhash Chand
    • 2
  • K. K. Raina
    • 3
  • Ravi Kumar
    • 1
    • 4
  1. 1.Centre for Materials Science and EngineeringNational Institute of TechnologyHamirpurIndia
  2. 2.Department of PhysicsNational Institute of TechnologyHamirpurIndia
  3. 3.School of Physics and Materials ScienceThapar UniversityPatialaIndia
  4. 4.Beant College of Engineering and TechnologyGurdaspurIndia

Personalised recommendations