Advertisement

Dielectric and microwave properties study of TiFeNbO6 ceramics added Bi2O3

  • D. G. SousaEmail author
  • G. D. Saraiva
  • J. M. S. Filho
  • J. M. Filho
  • A. S. B. Sombra
Article

Abstract

In this paper the ceramic matrix of TiFeNbO6 (TFNO) was studied. The TFNO phase was calcined at 1,075 °C and used to prepare the samples, of 2, 4, 6, 8 and 10 wt% of the Bi2O3 and sintered at 1,125 °C. These samples were characterized by X-ray diffraction (XRD), Raman spectroscopy (RS), scanning electron microscopy and dielectric microwave properties. XRD and RS were used to characterize these samples. The samples presented two new phases. The first phase is the tetragonal rutile structure with a space group of P42/mnm, equivalent at parent rutile Ti0.4Fe0.3 Nb0.3O2 (TFNO) with 040725 ICSD code, and the secondary phase belonging to the pyrochlore system Bi1.721Fe1.056Nb1.134O7 (BFNO), with a space group of Fd-3mZ (227), in a cubic structure. The dielectric properties have shown significant variation for 10 % Bi2O3-added sample, because the formation of the new phase (BFNO) contributes with the reduction of τ f from 281.12 to 77.45 ppm/°C and with increase in ε r , from 47.23 to 63.77 and an increase in the dielectric loss (tan δ), from 0.0016 to 0.0068, respectively. Even though, Bi2O3 additive deteriorates the dielectric loss of the ceramics, the permittivity has enhanced significantly, which is advantageous for reduction of the air gap between the probe and the DRA antennas that influences on the samples for future application in microwave.

Keywords

Rutile Dielectric Loss Dielectric Permittivity Bi2O3 Secondary Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was partly sponsored by the U. S. Air Force Office of Scientific Research (AFOSR) (FA9550-11-1-0095), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior). Prof. Gilberto, D. Saraiva, PhD, acknowledges the support from the MCT(Ministério da Ciência e Tecnologia)/CNPq Edital 14/2010 (process 476569/2010-9), FUNCAP (Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico)/Edital 02/2010 (process BP10031001350100/10) and FUNCAP/Edital 05/2009 (process 186.01.00/09).

References

  1. 1.
    Y. Xu, Ferroelectric Materials and Their Applications (Elsevier, Amsterdam, 1991) Google Scholar
  2. 2.
    L.E. Cross, Ferroelectrics 151, 305–320 (1994)CrossRefGoogle Scholar
  3. 3.
    M. Adamczyk, A. Molak, Z. Ujma, Ceram. Int. 35, 2197–2202 (2009)CrossRefGoogle Scholar
  4. 4.
    C. Lee, P. Ghosez, X. Gonze, Phys. Rev. B 50, 13379–13387 (1994)CrossRefGoogle Scholar
  5. 5.
    R. Mani, S.N. Achary, K.R. Chakraborty, S.K. Deshpande, J.E. Joy, A. Nag, J. Gopalakrishnan, A.K. Tyagi, J. Solid State Chem. 183, 1380–1387 (2010)CrossRefGoogle Scholar
  6. 6.
    W.H. Baur, Crystallogr. Rev. 13, 65–113 (2007)CrossRefGoogle Scholar
  7. 7.
    R. Mani, S.N. Achary, K.R. Chakraborty, S.K. Deshpande, J.E. Joy, A. Nag, J. Gopalakrishnan, A.K. Tyagi, Adv. Mater. 20, 1348–1352 (2008)CrossRefGoogle Scholar
  8. 8.
    E. Cross, Nature 432, 24–25 (2004)CrossRefGoogle Scholar
  9. 9.
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84–87 (2004)CrossRefGoogle Scholar
  10. 10.
    G.G. Yao, P. Liu, Phys. B Condens. Matter 405, 1955–1957 (2010)CrossRefGoogle Scholar
  11. 11.
    A. Chaouchi, S. Marinel, M. Aliouat, S. d’Astorg, J. Eur. Ceram. Soc. 27, 2561–2566 (2007)CrossRefGoogle Scholar
  12. 12.
    H.P. Wang, S.-Q. Xu, B. Zhang, Q.l. Zhang, H. Yang, Mater. Res. Bull. 44, 619–622 (2009)CrossRefGoogle Scholar
  13. 13.
    Y.C. Lee, C.-S. Chiang, Y.L. Huang, J. Eur. Ceram. Soc. 30, 963–970 (2010)CrossRefGoogle Scholar
  14. 14.
    H. Rietveld, Acta Crystallogr. 22, 151–152 (1967)CrossRefGoogle Scholar
  15. 15.
    L. Bleicher, J.M. Sasaki, C.O. Paiva Santos, J. Appl. Crystallogr. 33, 1189 (2000)CrossRefGoogle Scholar
  16. 16.
    R.A. Young, A. Sakthivel, T.S. Moss, C.O. Paiva-Santos, J. Appl. Crystallogr. 28, 366–367 (1995)CrossRefGoogle Scholar
  17. 17.
    P.B.A. Fechine, H.H.B. Rocha, R.S.T. Moretzsohn, J.C. Denardin, R. Lavin, A.S.B. Sombra, IET Microw. Antennas Propag. 3, 1191–1198 (2009)CrossRefGoogle Scholar
  18. 18.
    B.W. Hakki, P.D. Coleman, IRE Trans. Microw. Theory Tech. 8, 402–410 (1960)CrossRefGoogle Scholar
  19. 19.
    A.K. Axelsson, N.M. Alford, J. Eur. Ceram. Soc. 26, 1933–1936 (2006)CrossRefGoogle Scholar
  20. 20.
    S. Wu, X. Wei, X. Wang, H. Yang, S. Gao, J. Mater. Sci. Technol. 26, 472–476 (2010)CrossRefGoogle Scholar
  21. 21.
    S. Wang, Y.-D. Hou, M.-P. Zheng, H.Y. Ge, M.-K. Zhu, H. Yan, Mater. Res. Bull. 48, 3098–3102 (2013)CrossRefGoogle Scholar
  22. 22.
    M.A. Tena, P. Escribano, G. Monrós, J. Carda, J. Alarcón, Mater. Res. Bull. 27, 1301–1308 (1992)CrossRefGoogle Scholar
  23. 23.
    M.W. Lufaso, T.A. Vanderah, I.M. Pazos, I. Levin, R.S. Roth, J.C. Nino, V. Provenzano, P.K. Schenck, J. Solid State Chem. 179, 3900–3910 (2006)CrossRefGoogle Scholar
  24. 24.
    F. Matossi, J. Chem. Phys. 19, 1543–1546 (1951)CrossRefGoogle Scholar
  25. 25.
    S.P.S. Porto, P.A. Fleury, T.C. Damen, Phys. Rev. 154, 522–526 (1967)CrossRefGoogle Scholar
  26. 26.
    J.F. Mammone, S.K. Sharma, M. Nicol, Solid State Commun. 34, 799–802 (1980)CrossRefGoogle Scholar
  27. 27.
    C.A. Melendres, A. Narayanasamy, V.A. Maroni, R.W. Siegel, J. Mater. Res. 4, 1246–1250 (1989)CrossRefGoogle Scholar
  28. 28.
    H.C. Gupta, S. Brown, N. Rani, V.B. Gohel, J. Raman Spectrosc. 32, 41–44 (2001)CrossRefGoogle Scholar
  29. 29.
    A. Garbout, A. Rubbens, R.N. Vannier, S. Bouattour, A.W. Kolsi, J. Raman Spectrosc. 39, 1469–1474 (2008)CrossRefGoogle Scholar
  30. 30.
    D.J. Arenas, L.V. Gasparov, W. Qiu, J.C. Nino, C.H. Patterson, D.B. Tanner, Phys. Rev. B 82, 214302 (2010)CrossRefGoogle Scholar
  31. 31.
    X. Gao, Z. Zhou, J. Xue, J. Wang, J. Am. Ceram. Soc. 88, 1037–1040 (2005)CrossRefGoogle Scholar
  32. 32.
    M. Sandeep, O.P. Thakur, D.K. Bhattacharya, K. Sreenivas, J. Phys. D Appl. Phys. 42, 065413 (2009)CrossRefGoogle Scholar
  33. 33.
    C.H. Wang, Key Eng. Mat. 413, 434–435 (2010)Google Scholar
  34. 34.
    D.P. Cann, C.A. Randall, T.R. Shrout, Solid State Commun. 100, 529–534 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • D. G. Sousa
    • 1
    • 3
    Email author
  • G. D. Saraiva
    • 2
  • J. M. S. Filho
    • 1
    • 3
  • J. M. Filho
    • 4
  • A. S. B. Sombra
    • 1
    • 3
    • 4
  1. 1.Departamento de Engenharia de Teleinformática, Centro de TecnologiaUniversidade Federal do CearáFortalezaBrazil
  2. 2.Faculdade de Educação Ciências e Letras do Sertão CentralUniversidade Estadual do CearáQuixadáBrazil
  3. 3.Laboratório de Telecomunicações e Ciência e Engenharia de Materiais (LOCEM)Universidade Federal do CearáFortalezaBrazil
  4. 4.Departamento de FísicaUniversidade Federal do CearáFortalezaBrazil

Personalised recommendations