Journal of Materials Science: Materials in Electronics

, Volume 25, Issue 9, pp 3924–3932 | Cite as

Microstructural defect properties of InGaN/GaN blue light emitting diode structures

  • Y. BaşEmail author
  • P. Demirel
  • N. Akın
  • C. Başköse
  • Y. Özen
  • B. Kınacı
  • M. K. Öztürk
  • S. Özçelik
  • E. Özbay


In this paper, we study structural and morphological properties of metal-organic chemical vapour deposition-grown InGaN/GaN light emitting diode (LED) structures with different indium (In) content by means of high-resolution X-ray diffraction, atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), photoluminescence (PL) and current–voltage characteristic (I–V). We have found out that the tilt and twist angles, lateral and vertical coherence lengths of mosaic blocks, grain size, screw and edge dislocation densities of GaN and InGaN layers, and surface roughness monotonically vary with In content. Mosaic defects obtained due to temperature using reciprocal lattice space map has revealed optimized growth temperature for active InGaN layer of MQW LED. It has been observed in this growth temperature that according to AFM result, LED structure has high crystal dimension, and is rough whereas according to PL and FTIR results, bandgap energy shifted to blue, and energy peak half-width decreased at high values. According to I–V measurements, it was observed that LED reacted against light at optimized temperature. In conclusion, we have seen that InGaN MQW structure’s structural, optical and electrical results supported one another.


Light Emit Diode Tilt Angle Burger Vector Twist Angle InGaN Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the projects DPT-2011K120290, ESF-EPIGRAT, EU-N4E, and NATO-SET-181, and TUBITAK under Project Nos. 107A004, 107A012, and 109E301.


  1. 1.
    S. Nakamura, Science 281, 956 (1998)CrossRefGoogle Scholar
  2. 2.
    S. Chichibu, T. Azuhata, T. Sota, S. Nakamura, Appl. Phys. Lett. 69, 4188 (1996)CrossRefGoogle Scholar
  3. 3.
    S.D. Lester, F.A. Ponce, M.G. Crawford, D.A. Steigerwald, Appl. Phys. Lett. 66, 1249 (1995)CrossRefGoogle Scholar
  4. 4.
    D. Kapolnek, X.H. Wu, B. Heyıng, S. Keller, B.P. Keller, U.K. Mıshra, S.P. Denbaars, J.S. Speck, Appl. Phys. Lett. 67, 1541 (1995)CrossRefGoogle Scholar
  5. 5.
    M. Schuster, P.O. Gervais, B. Jobst, W. Ho¨sler, R. Averbeck, H. Riechert, A. Iberlkand, R. Sto¨mmerk, J. Phys. D Appl. Phys. 32, 56 (1999)CrossRefGoogle Scholar
  6. 6.
    M.A. Moram, M.E. Vickers, Rep. Prog. Phys. 72, 036502 (2009)CrossRefGoogle Scholar
  7. 7.
    M.K. Öztürk, H. Yu, B. Sarıkavak, S. Korçak, S. Özçelik, E. Özbay, J. Mater. Sci. Mater. Electron. 21, 185 (2010)Google Scholar
  8. 8.
    T. Metzger, R. Höpler, E. Born, O. Ambacher, M. Stutzmann, R. Stömmer, M. Schuster, H. Gobe, S. Christiansen, M. Albrecht, H.P. Strun, Philos. Mag. A 77, 1013 (1998)CrossRefGoogle Scholar
  9. 9.
    G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1953)CrossRefGoogle Scholar
  10. 10.
    H. Yu, M.K. Öztürk, S. Özçelik, E. Özbay, J. Crys, Growth 293, 273 (2006)CrossRefGoogle Scholar
  11. 11.
    F.K. Yam, Z. Hassan, Superlattices Microstruct. 43, 1 (2008)CrossRefGoogle Scholar
  12. 12.
    E. Arslan, M.K. Öztürk, Ö. Duygulu, A.A. Kaya, S. Özçelik, E. Özbay, Appl. Phys. Mater. Sci. Process. 94, 73 (2009)CrossRefGoogle Scholar
  13. 13.
    E. Arslan, M.K. Öztürk, A. Teke, S. Özçelik, E. Özbay, J. Phys. D Appl. Phys. 41, 155317 (2008)CrossRefGoogle Scholar
  14. 14.
    M.E. Vickers, M.J. Kappers, R. Datta, C. McAleese, T.M. Smeeton, F.D.G. Rayment, C.J. Humphreys, J. Phys. D Appl. Phys. 38, A99 (2005)CrossRefGoogle Scholar
  15. 15.
    X.H. Zheng, H. Chen, Z.B. Yan, Y.J. Han, H.B. Yu, D.S. Li, Q. Huang, J.M. Zhou, J. Cryst. Growth 255, 63 (2003)CrossRefGoogle Scholar
  16. 16.
    P. Gay, P.B. Hirsch, A. Kelly, Acta Metall. 1, 315 (1953)CrossRefGoogle Scholar
  17. 17.
    C.G. Dunn, E.F. Koch, Acta Metall. 5, 548 (1957)CrossRefGoogle Scholar
  18. 18.
    P.F. Fewster, J. Appl. Crystallogr. 22, 64 (1989)CrossRefGoogle Scholar
  19. 19.
    M.J. Hordon, B.L. Averbach, Acta Met. 9, 237 (1961)CrossRefGoogle Scholar
  20. 20.
    Z.F. Ma, D.G. Zhao, Y.T. Wang, D.S. Jiang, S.M. Zhang, J.J. Zhu, Z.S. Liu, B.J. Sun, Hui Yang, J.W. Liang, J. Phys. D Appl. Phys. 41, 105106 (2008)CrossRefGoogle Scholar
  21. 21.
    S.K. Leey, T.H. Kımy, S.Y. Leey, K.C. Choi, P. Yang, Philos. Mag. 87, 2105 (2007)CrossRefGoogle Scholar
  22. 22.
    S. Nakamura, M. Senoh, T. Mukai, Appl. Phys. Lett. 62, 2390 (1993)CrossRefGoogle Scholar
  23. 23.
    A. Chitnis, C. Chen, V. Adivarahan, M. Shatalov, E. Kuokstis, V. Mandavilli, J. Yang, M.A. Khan, Appl. Phys. Lett. 84, 183 (2004)CrossRefGoogle Scholar
  24. 24.
    D. Coquillat, M.L. Vassor d’Yerville, M. Kazan, C. Liu, I.M. Watson, P.R. Edwards, R.W. Martin, H.M.H. Chong, R.M. De La Rue., J. Appl. Phys. 103, 44910 (2008)CrossRefGoogle Scholar
  25. 25.
    B. Kınacı, S.Ş. Çetin, A. Bengi, S. Özçelik, Mater. Sci. Semicond. Process. 15, 531 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Y. Baş
    • 1
    Email author
  • P. Demirel
    • 4
  • N. Akın
    • 2
  • C. Başköse
    • 2
  • Y. Özen
    • 2
  • B. Kınacı
    • 3
  • M. K. Öztürk
    • 2
  • S. Özçelik
    • 2
  • E. Özbay
    • 4
  1. 1.National Boron Research InstituteAnkaraTurkey
  2. 2.Department of PhysicsGazi Photonic Research CenterAnkaraTurkey
  3. 3.Department of Physics, Faculty of ScienceIstanbul UniversityIstanbulTurkey
  4. 4.Department of Physics, Department of Electrical and Electronics EngineeringNanotechnology Research CenterAnkaraTurkey

Personalised recommendations