Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Thermal properties of Sn-based solder alloys

  • 564 Accesses

  • 22 Citations

Abstract

During last few decades, emerging environmental regulations worldwide, more notably in Europe and Japan, have targeted the elimination of Pb usage in electronic assemblies due to the inherent toxicity of this element. This situation drives to the replacement of the Sn–Pb solder alloy of eutectic composition commonly used as joining material to suitable lead-free solders for microelectronic assembly. Sn-based alloys containing Ag, Cu, Bi, and Zn are potential lead-free solders, usually close to the binary or ternary eutectic composition. For this reason a great effort was directed to establish reliable thermophysical data fundamental to interpret the solidification process and fluidity of alloys belonging to these systems. In this work, an analysis of the solidification process of pure Sn, binary Sn–Ag, Sn–Cu, Sn–Bi, Sn–Zn, Sn–Pb and ternary Sn–Ag–Cu eutectic alloys was carried out using computer aided-cooling curve analysis and differential scanning calorimetry.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    M.M. Schwartz, S. Aircraft. Welding, Brazing, and Soldering, volume 6 of ASM Metals Handbook. ASM Intl., pp. 126–129 (1993)

  2. 2.

    R. Wassink, Soldering in Electronics, 2nd edn. (Electrochemical Publications Ltd, Ayr, 1989)

  3. 3.

    R. Strauss, Surface Mount Technology (Butterworth-Heinemann, Oxford, UK, 1994)

  4. 4.

    Directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment. European Parliament and the Council of 27 January 2003 (OJ L 37, 13.2.2003, p. 19)

  5. 5.

    Directive 2002/96/EC on waste electrical and electronic equipment. European Parliament and the Council of 27 January 2003 (OJ L 37, 13.2.2003, p. 24)

  6. 6.

    P. Lauro, S. Kang, W. Choi, D.-Y. Shih, J. Electron. Mater. 32, 1432–1440 (2003)

  7. 7.

    S.-H. Huh, K.-S. Kim, K. Suganuma, Mater. Trans. JIM 42, 739–744 (2001)

  8. 8.

    U. Kattner, JOM 54, 45–51 (2002)

  9. 9.

    Z. Moser, W. Gcsior, J. Pstrus, S. Ishihara, X.J. Liu, I. Ohnuma, R. Kainuma, K. Ishida, Mater. Trans. JIM 45, 652–660 (2004)

  10. 10.

    N. Moelans, K.H. Kumar, P. Wollants, J. Alloys. Comp. 360, 98–106 (2003)

  11. 11.

    S.W. Yoon, J.R. Soh, H.M. Lee, B.-J. Lee, Acta Mater. 45, 951–960 (1997)

  12. 12.

    T. Siewert, S. Liu, D.R. Smith, J.C. Madeni, Properties of lead-free solders, release 4.0. Technical report, (NIST and Colorado School of Mines, Colorado, 2002)

  13. 13.

    European Cooperation in Science and Technology. COST 531 database (2007)

  14. 14.

    European Cooperation in Science and Technology. COST Action MP0602 “Advanced Solder Materials for High Temperature Application (HISOLD)” (2011)

  15. 15.

    National Physical Laboratory, UK. NPL Lead Free Solder Database

  16. 16.

    D. Stefanescu, G. Upadhya, D. Bandyopadhyay, Methods Mater. Trans. A 21, 997–1005 (1990)

  17. 17.

    I.G. Chen, D.M. Stefanescu, AFS Trans. 92, 947–965 (1984)

  18. 18.

    K.G. Upadhya, D.M. Stefanescu, K. Lieu, D.P. Yeager, AFS Trans. 97, 61–66 (1989)

  19. 19.

    C.H. Su, H.L. Tsai, AFS Trans. 99, 781–789 (1991)

  20. 20.

    J.H. Chen, H.L. Tsai, AFS Trans. 98, 539–546 (1990)

  21. 21.

    S.H. Jong, W.S. Hwang, AFS Trans. 100, 939–946 (1992)

  22. 22.

    Y.-F. Chen, S.-H. Jong, W.-S. Hwang, Mat. Sci. Technol. 12, 539–544 (1996)

  23. 23.

    J.O. Barlow, D.M. Stefanescu, AFS Trans. 105, 349–354 (1997)

  24. 24.

    D. Emadi, L.V. Whiting, S. Nafisi, R. Ghomashchi, J. Thermal Anal. Calorim. 81, 235–242 (2005)

  25. 25.

    S. Thompson, S.L. Cockcroft, M.A. Wells, Mater. Sci. Technol. 20, 194–200 (2004)

  26. 26.

    O.B. Garbellini, H.A. Palacio, H. Biloni, Cast Metals 3, 82–9 (1990)

  27. 27.

    J. Campbell, Cast Metals 4, 101–2 (1991)

  28. 28.

    K. Ravi, R. Pillai, K. Amaranathan, B. Pai, M. Chakraborty, J. Alloys. Comp. 456, 201–10 (2008)

  29. 29.

    O. Fornaro, H.A. Palacio, J. Mater. Sci. 44, 4342–4347 (2009)

  30. 30.

    H. Fredriksson, Interpretation and use of cooling curves (Thermal Analysis), vol. 15 (Casting) of Metals Handbook. ASM Int., Ohio, USA, 9th edn (1988), pp. 182–185

  31. 31.

    K. Moon, W. Boettinger, U. Kattner, F. Biancaniello, C. Handwerker, J. Electron. Mater. 29, 1122–1136 (2000). doi:10.1007/s11664-000-0003-x

  32. 32.

    K.-W. Moon, W. Boettinger, JOM 56, 22–27 (2004)

  33. 33.

    A. Dinsdale, Calphad 15, 317–425 (1991)

Download references

Acknowledgments

This work was carried out at CIFICEN (Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires, CONICET-UNCPBA) and IFIMAT (Instituto de Física de Materiales Tandil, UNCPBA-CICPBA-MT) and has been partially supported by ANPCyT (Agencia Nacional de Promoción Científica y Tecnológica, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917 (C1033AAJ) Buenos Aires, Argentina), SeCAT-UNCPBA (Secretaría de Ciencia, Arte y Tecnología de la Universidad Nacional del Centro de la Provincia de Buenos Aires) and CICPBA (Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Av 526 e/10 y 11 (B1906APP) La Plata, Argentina). CM and OF belong to CONICET, and OG and HP belong to CICPBA.

Author information

Correspondence to Carina Morando.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morando, C., Fornaro, O., Garbellini, O. et al. Thermal properties of Sn-based solder alloys. J Mater Sci: Mater Electron 25, 3440–3447 (2014). https://doi.org/10.1007/s10854-014-2036-6

Download citation

Keywords

  • Latent Heat
  • Solder Alloy
  • Lead Free Solder
  • Eutectic Alloy
  • Ternary Eutectic