Microstructure and electrical properties of rare-earth oxides doped ZnO-based linear resistance ceramics

  • Jingjing Wang
  • Jianfeng Zhu
  • Yong Zhou
  • Fen Wang


The ZnO-based linear resistance ceramics doped with rare-earth oxides (Y2O3, La2O3) have been prepared by the conventional ceramics method. The effect of the different doping amounts of rare-earth oxides on the microstructure, electrical properties and aging behavior were investigated in detail. The electrical properties analysis shows that the La2O3 addition on ZnO-based linear resistance ceramics has more obviously influence than the addition of Y2O3. The samples with the La2O3 content of 0.25 mol% sintered at 1,320 °C exhibits excellent electrical properties with the resistivity of 253.5 Ω cm and the resistance temperature coefficient of 3.62 × 10−4/ °C, which are improved by 60 and 90 %, respectively. The nonlinear coefficient of voltage decreases to 1.16, decreases by 4.3 % and the stability of −1.2 % in the variation rate of the resistivity for aging temperature.


Y2O3 La2O3 Donor Concentration Nonlinear Coefficient ZnAl2O4 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Key Project of Chinese Ministry of Education (No 210218), Scientific and technological project of Wenzhou (H20100079, H20100087), and the Graduate Innovation Fund of Shaanxi University of Science and Technology.


  1. 1.
    D. Sridevi, K.V. Rajendran, Bull. Mater. Sci. 32, 165 (2009)CrossRefGoogle Scholar
  2. 2.
    G.L. Hu, J.F. Zhu, H.B. Yang, F. Wang, J. Mater. Sci. Mater. Electron 24, 2944 (2013)CrossRefGoogle Scholar
  3. 3.
    Z.G. Zang, A. Nakamura, J. Temmyo, Opt. Express 21, 11448 (2013)CrossRefGoogle Scholar
  4. 4.
    S. Shirakawa, S. Owada, N. Iimura, K. Kurita, T. Yamazaki, K. Shindo, Y. Yamauchi, IEEE. Trans. Power. Deliver 3, 183 (1988)CrossRefGoogle Scholar
  5. 5.
    J.F. Zhu, J.J. Wang, Y. Zhu, F. Wang, J. Mater. Sci. Mater. Electron 25, 791 (2014)CrossRefGoogle Scholar
  6. 6.
    T.K. Gupta, J. Am, Ceram. Soc. 73, 1817 (1990)CrossRefGoogle Scholar
  7. 7.
    S. Bernik, N. Daneu, J. Eur, Ceram. Soc. 27, 3361 (2007)Google Scholar
  8. 8.
    E.R. Leite, M.A.L. Nobre, E. Longo, J.A. Varela, J. Mater. Sci. 31, 5391 (1996)CrossRefGoogle Scholar
  9. 9.
    J.F. Zhu, Y. Zhu, H.B. Yang, F. Wang, J. Mater. Sci. Mater. Electron 23(23), 445 (2012)CrossRefGoogle Scholar
  10. 10.
    M. Matsuka, Jpn. J. Appl. Phys. 10, 736 (1971)CrossRefGoogle Scholar
  11. 11.
    L.M. Levinson, H.R. Philipp, J. Am. Ceram. Soc. Bull. 65, 639 (1986)Google Scholar
  12. 12.
    D.R. Clarke, J. Am. Ceram. Soc. 82, 485 (1999)CrossRefGoogle Scholar
  13. 13.
    M.A. Ashraf, A.H. Bhuiyan, M.A. Hakim, M.T. Hossain, Mater. Sci. Eng., B 176, 855 (2011)CrossRefGoogle Scholar
  14. 14.
    S. Bernik, S. Macek, B. Ai, J. Eur, Ceram. Soc. 21, 1875 (2001)CrossRefGoogle Scholar
  15. 15.
    S. Bernik, S. Macek, B. Ai, J. Eur, Ceram. Soc. 24, 1195 (2004)CrossRefGoogle Scholar
  16. 16.
    C.-W. Nahm, Mater. Lett. 59, 2097 (2005)CrossRefGoogle Scholar
  17. 17.
    X. Dong, Y.J. Gan, Y. Wang, S.J. Peng, L. Dong, J. Alloys Compd. 581, 52 (2013)CrossRefGoogle Scholar
  18. 18.
    D.H. Templeton, Carol H. Dauben, J. Eur. Ceram. Soc. 76, 5237 (1954)Google Scholar
  19. 19.
    D. Xu, X.F. Shi, X.N. Cheng, J. Yang, Y.E. Fan, H.M. Yuan, L.Y. Shi, T. Nonferr, Metal. Soc. 20, 2303 (2010)Google Scholar
  20. 20.
    J.L. Li, G.H. Chen, C.L. Yuan, Ceram. Int. 39, 2231 (2013)CrossRefGoogle Scholar
  21. 21.
    Y. Zhang, J. Han, Mater. Lett. 60, 2522 (2006)CrossRefGoogle Scholar
  22. 22.
    J. Feng, C.M. Chen, Polymer 41, 7279 (2000)CrossRefGoogle Scholar
  23. 23.
    J.F. Zhu, J.J. Wang, F. Wang, J. Mater. Sci. Mater. Electron 25, 2273 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jingjing Wang
    • 1
  • Jianfeng Zhu
    • 1
  • Yong Zhou
    • 1
  • Fen Wang
    • 1
  1. 1.Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of EducationShaanxi University of Science and TechnologyXi’anChina

Personalised recommendations