Preparation of RF sputtered AZO/Au thin film hydrogen peroxide sensitive electrode for utilization as a biosensor

  • I. Kars Durukan
  • S. Çalışkan
  • S. Çete
  • B. S. Çevrimli
  • B. Kınacı
  • Y. Özen
  • S. Çörekçi
  • M. K. Öztürk
  • T. Memmedli
  • S. Özçelik


In this study, hydrogen peroxide (H2O2) sensitive Al doped ZO(AZO)/Au thin film electrode has been developed for the utilization as a biosensor. A preferred c-axis oriented AZO/Au thin film was deposited on quartz substrate by RF magnetron sputtering at room temperature. Structural, morphological and optical properties of the AZO film were analyzed by X-ray diffraction, atomic force microscopy and photoluminescence. The sensor performance was characterized by electrochemical analysis device. The sensibility of prepared thin film electrodes to H2O2 was studied. The dependence of amperometric response current on the glucose and cholesterol concentrations was also investigated.


Cholesterol Gluconic Acid Cholesterol Oxidase Amperometric Response Glucose Biosensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. Görgülü, S. Çete, H. Arslan, A. Yaşar, Preparing a new biosensor for hypoxanthine determination by immobilization of xanthine oxidase and uricase in polypyrrole-polyvinyl sulphonate film. Artif. Cells Nanomed. Biotechnol. 41, 327–331 (2013)CrossRefGoogle Scholar
  2. 2.
    E. de Souza Gil, G. Rodrigues de Melo, Electrochemical biosensors in pharmaceutical analysis, Braz. J. Pharm. Sci. 46 (2010) 3Google Scholar
  3. 3.
    S. P. Singh, Sunil K. Arya, P. Pandey, and B. D. Malhotra, S. Saha, K. Sreenivas, and V.Gupta, Cholesterol biosensor based on rf sputtered zinc oxide nanoporous thin film, Appl. Phys. Lett. 91 (2007) 063901Google Scholar
  4. 4.
    O. Çolak, A. Yaşar, S. Çete, F. Arslan, Glucose biosensor based on the immobilization of glucose oxidase on electrochemically synthesized polypyrrole-poly(vinyl sulphonate) composite film by cross-linking with glutaraldehyde. Artif. Cells Blood Substit. Biotechnol. 40, 354–361 (2012)CrossRefGoogle Scholar
  5. 5.
    R. Khan, P.R. Solanki, A. Kaushik, S.P. Singh, S. Ahmad, B.D. Malhotra, Cholesterol biosensor based on electrochemically prepared polyaniline conducting polymer film in presence of a nonionic surfactant. J. Polym. Res. 16, 363–373 (2009)CrossRefGoogle Scholar
  6. 6.
    M.K. Ram, P. Bertoncello, H. Ding, S. Paddeu, C. Nicolini, Cholesterol biosensors prepared by layer-by-layer technique. Biosens. Bioelectron. 16, 849–856 (2001)CrossRefGoogle Scholar
  7. 7.
    M.L. Moraes, N.C. de Souza, O.H. Caio, F. Marystela, P. Ubirajara, F. Rodrigues, R. Antonio Jr, Z. Valtencir, N.O. Osvaldo Jr, Immobilization of cholesterol oxidase in LbL films and detection of cholesterol using ac measurements. Mater. Sci. Eng. C 29, 442–447 (2009)CrossRefGoogle Scholar
  8. 8.
    S.M. Muhammet, S. Çete, F. Arslan, A. Yaşar, Amperometric cholesterol biosensors based on the electropolymerization of pyrrole and aniline in sulphuric acid fort he determination of cholesterol in serum. Artif. Cells Blood Substit. Biotechnol. 37, 273–278 (2009)CrossRefGoogle Scholar
  9. 9.
    F. Yıldırımoğlu, F. Arslan, S. Çete, A. Yaşar, Preparation of a polypyrrole-polyvinylsulphonate composite film biosensor for determination of cholesterol based on entrapment of cholesterol oxidase. Sensors 9, 6435–6445 (2009)CrossRefGoogle Scholar
  10. 10.
    M.M.F. Choi, T.P. Yiu, Immobilization of beef liver catalase on eggshell membrane for fabrication of hydrogen peroxide biosensor. Enzym. Microb. Technol. 34, 41–47 (2004)CrossRefGoogle Scholar
  11. 11.
    J. Pei, X. Li, Xanthine and hypoxanthine sensors based on xanthine oxidase immobilize on a CuPtCl6 chemically modified electrode and liquid chromatography electrochemical detection. Anal. Chim. Acta 414, 205–213 (2000)CrossRefGoogle Scholar
  12. 12.
    E. Laudet, N.P. Botting, J.A. Crayston, N. Dale, A three-enzyme microelectrode sensor for detecting purine release from central nervous system. Biosens. Bioelectron. 18, 43–52 (2003)CrossRefGoogle Scholar
  13. 13.
    S. Çete, O. Bal, Preparation of Pt/polypyrrole—para toluene sulfonate hydrogen peroxide sensitive electrode for the utilizing as a biosensor, Artifical Cells, Nanomedicine, and Biotechnology, Early online (2013) 1-7Google Scholar
  14. 14.
    J. Liu, M. Agarwal, K. Varahramyan, Glucose sensor based on organic thin film transistor using glucose oxidase and conducting polymer. Sens. Actuators B: Chem. 135, 195–199 (2008)CrossRefGoogle Scholar
  15. 15.
    J.X. Wang, X.W. Sun, A. Wei, Zinc oxide nanocomb biosensor for glucose detection. Appl. Phys. Lett. 88, 233106 (2006)CrossRefGoogle Scholar
  16. 16.
    G. Amin, M.H. Asif, A. Zainelabdin, S. Zaman, O. Nur, M. Willander, Influence of pH, precursor concentration, growth time, and temperature on the morphology of ZnO nanostructures grown by the hydrothermal method. J. Nanomater. 2011, 9 (2011)Google Scholar
  17. 17.
    S.A. Kumar, S.-M. Chen, Nanostructured Zinc Oxide Particles in Chemically Modified Electrodes for Biosensor Applications. Anal. Lett. 41, 141–158 (2008)CrossRefGoogle Scholar
  18. 18.
    C. Lee, Y. Chiu, S. Ho, Y. Lee, Investigation of a photoelectrochemical passivated ZnO-based glucose biosensor. Sensors 11, 4648–4655 (2011)CrossRefGoogle Scholar
  19. 19.
    I. Kars Durukan, Y. Özen, K. Kizilkaya, M.K. Öztürk, T. Memmedli, S. Özcelik, Effects of annealing and deposition temperature on the structural and optical properties of AZO thin films. J. Mater. Sci.: Mater. Electron. 24, 142–147 (2013)Google Scholar
  20. 20.
    W. Yang, Z. Wu, Z. Liu, A. Pang, Y. Tu, Z.C. Feng, Room temperature deposition of Al-doped ZnO films on quartz substrates by radio-frequency magnetron sputtering and effects of thermal annealing. Thin Solid Films 519, 31–36 (2010)CrossRefGoogle Scholar
  21. 21.
    A. Mahmood, N. Ahmed, Q. Raza, T. Muhammad Khan, M. Mehmood, M.M. Hassan, N. Mahmood, Effect of thermal annealing on the structural and optical properties of ZnO thin films deposited by the reactive e-beam evaporation technique. Phys. Scr. 82, 065801 (2010)CrossRefGoogle Scholar
  22. 22.
    B.D. Cullity, in Elements of X-Ray Diffractions (Addison-Wesley Reading) 102 (1978)Google Scholar
  23. 23.
    L. Balakrishnan, S. Gowrishankar, J. Elanchezhiyan, N. Gopalakrishnan, Influence of Al concentration on electrical, structural and optical properties of Al-As codoped p-ZnO thin films Physica B 406 (2011) 4447–4452Google Scholar
  24. 24.
    J. Kim, T. Shin, K. Yang, J. Jeong, B. Choi, Abstraction of blue photoluminescence in Al-doped ZnO nanoparticles prepared by electron beam deposition. Appl. Phys. Express 5, 012603 (2012)CrossRefGoogle Scholar
  25. 25.
    L.M. Kukreja, P. Misra, J. Fallert, D.M. Phase, H. Kalt, Correlation of spectral features of photoluminescence with residual native defects of ZnO thin films annealed at different temperatures. J. Appl. Phys. 112, 013525 (2012)CrossRefGoogle Scholar
  26. 26.
    S. Pati, S.B. Majumder, P. Banerji, Role of oxygen vacancy in optical and gas sensing characteristics of ZnO thin films. J. Alloy. Compd. 541, 376–379 (2012)CrossRefGoogle Scholar
  27. 27.
    S. Çörekçi, M.K. Öztürk, M. Çakmak, S. Özçelik, E. Özbay, The influence of thickness and ammonia flow rate on the properties of AlN layers. Mater. Sci. Semicond. Process. 15, 32–36 (2012)CrossRefGoogle Scholar
  28. 28.
    H. Altuntas, S. Altindal, S. Corekci, M.K. Ozturk, S. Ozcelik, Electrical characteristics of Au/n-GaAs structures with thin and thick SiO2 dielectric layer. Semiconductors 45, 1286–1290 (2011)CrossRefGoogle Scholar
  29. 29.
    M. Suchea, S. Christoulakis, N. Katsarakis, T. Kitsopoulos, G. Kiriakidis, Comparative study of zinc oxide and aluminum doped zinc oxide transparent thin films grown by direct current magnetron sputtering. Thin Solid Films 515, 6562–6566 (2007)CrossRefGoogle Scholar
  30. 30.
    C.S. Singh, G. Agarwal, G.D. Rao, S. Chaudhary, R. Singh, Effect of hydrogen peroxide treatment on the electrical characteristics of AuZnO epitaxial Schottky diode. Mater. Sci. Semicond. Process. 14, 1–4 (2011)CrossRefGoogle Scholar
  31. 31.
    G. Luka, T. Krajewski, L. Wachnicki, B. Witkowski, E. Lusakowska, W. Paszkowicz, E. Guziewicz, M. Godlewski, Transparent and conductive undoped zinc oxide thin films grown by atomic layer deposition. Phys. Status Solid A 207, 1568–1571 (2010)CrossRefGoogle Scholar
  32. 32.
    S.K. Aryaa, S. Saha, J.E. Ramirez-Vick, V. Gupta, S. Bhansali, S.P. Singh, Recent advances in ZnO nanostructures and thin films for biosensor applications. Anal. Chim. Acta. 737, 1–21 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • I. Kars Durukan
    • 1
  • S. Çalışkan
    • 2
  • S. Çete
    • 2
  • B. S. Çevrimli
    • 3
  • B. Kınacı
    • 4
  • Y. Özen
    • 5
  • S. Çörekçi
    • 6
  • M. K. Öztürk
    • 5
    • 7
  • T. Memmedli
    • 5
    • 7
  • S. Özçelik
    • 5
    • 7
  1. 1.Life Sciences Research and Application CenterGazi UniversityAnkaraTurkey
  2. 2.Department of Chemistry, Faculty of SciencesGazi UniversityAnkaraTurkey
  3. 3.Department of Chemistry, Ataturk Vocational SchoolGazi UniversityAnkaraTurkey
  4. 4.Department of Physics, Faculty of SciencesIstanbul UniversityIstanbulTurkey
  5. 5.Photonics Research CenterGazi UniversityAnkaraTurkey
  6. 6.Energy Systems Engineering Department, Faculty of TechnologyKırklareli UniversityKırklareliTurkey
  7. 7.Department of Physics, Faculty of SciencesGazi UniversityAnkaraTurkey

Personalised recommendations