Growth and characterizations of dual ion beam sputtered CIGS thin films for photovoltaic applications

  • Vishnu Awasthi
  • Sushil K. Pandey
  • Saurabh K. Pandey
  • Shruti Verma
  • Mukul Gupta
  • Shaibal Mukherjee


The growth of CIGS thin films on soda-lime glass substrates at different substrate temperatures by dual ion beam sputtering system in a single-step route from a single quaternary sputtering target with the composition of Cu (In0.70 Ga0.30) Se2 was reported. The effects of the substrate temperature on structural, optical, morphological and electrical properties of CIGS films were investigated. Stoichiometry of one such film was investigated by X-ray photoelectron spectroscopy. All CIGS films had demonstrated a strong (112) orientation located at 2θ ~26.70o, which indicated the chalcopyrite structure of films. The value of full-width at half-maximum of (112) peak was reduced from 0.58° to 0.19° and crystallite size was enlarged from 14.98 to 43.05 nm as growth temperature was increased from 100 to 400 °C. However, atomic force microscope results showed a smooth and uniform surface at lower growth temperature and the surface roughness was observed to increase with increasing growth temperature. Hall measurements exhibited the minimum film resistivity of 0.09 Ω cm with a hole concentration of 2.42 × 1018 cm−3 and mobility of 28.60 cm2 V−1 s−1 for CIGS film grown at 100 °C. Film absorption coefficient was found to enhance nominally from 1 × 105 to 2.3 × 105 cm−1 with increasing growth temperature from 100 to 400 °C.


  1. 1.
    S. Theodoropoulou, D. Papadimitriou, K. Anestou, C. Cobet, N. Esser, Semicond. Sci. Technol. 24, 015014 (2009)CrossRefGoogle Scholar
  2. 2.
    L. Shay, J. Wernick, Ternary Chalcopyrite Semiconductors (Pergamon, Oxford, 1975)Google Scholar
  3. 3.
    J.E. Jaffe, A. Zunger, Phys. Rev. B 27, 5176 (1983)CrossRefGoogle Scholar
  4. 4.
    C. Persson, Appl. Phys. Lett. 93(7), 072106 (2008)CrossRefGoogle Scholar
  5. 5.
    J.E. Jaffe, A. Zunger, Phys. Rev. B 28, 5822 (1983)CrossRefGoogle Scholar
  6. 6.
    A.B. Djurisic, E.H. Li, Appl. Phys. A 73, 189 (2001)CrossRefGoogle Scholar
  7. 7.
    I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, R. Noufi, Prog. Photovolt. 16, 235 (2008)CrossRefGoogle Scholar
  8. 8.
    P. Jackson, D. Hariskos, E. Lotter, S. Paeterl, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, Prog. Photovolt. 19, 894 (2011)CrossRefGoogle Scholar
  9. 9.
    MiaSole press release, 2010
  10. 10.
    K. Siemer, J. Klaer, I. Luck, J. Bruns, R. Klenk, D. Braunig, Sol. Energy Mat. Sol. Cells 67, 159–166 (2001)CrossRefGoogle Scholar
  11. 11.
    L.L. Kazmerski, G.A. Sanbon, J. Appl. Phys. 48, 3178 (1977)CrossRefGoogle Scholar
  12. 12.
    R. Scheer, T. Walter, H.W. Schock, M.L. Fearheiley, H.J. Lewerenz, Appl. Phys. Lett. 63, 3294 (1993)CrossRefGoogle Scholar
  13. 13.
    Y. Ogawa, A. Jager-Waldau, Y. Hashimoto, K. Ito, Jpn. J. Appl. Phys. 33, L1775 (1994)CrossRefGoogle Scholar
  14. 14.
    H.L. Hwang, C.Y. Sun, C.S. Fang, S.D. Chang, C.H. Cheng, M.H. Yang, H.H. Lin, T.T. Uwan-mu, J. Cryst. Growth. 55, 116 (1981)CrossRefGoogle Scholar
  15. 15.
    H.L. Hwang, C.L. Cheng, L.M. Liu, C.Y. Sun, Thin Solid Films 67, 83 (1980)CrossRefGoogle Scholar
  16. 16.
    Y.B. He, A. Polity, H.R. Alves, I. Osterreicher, W. Kriegseis, D. Pfisterer, B.K. Meyer, M. Hardt, Thin Solid Films 62, 403–404 (2002)Google Scholar
  17. 17.
    G. Hodes, T. Engelhard, D. Cahen, Thin Solid Films 128, 93 (1985)CrossRefGoogle Scholar
  18. 18.
    H. Onagawa, K. Miyashita, Jpn. J. Appl. Phys. 23, 965 (1984)CrossRefGoogle Scholar
  19. 19.
    S.K. Pandey, S.K. Pandey, V. Awasthi, M. Gupta, U.P. Deshpandey, S. Mukherjee, Appl. Phys. Lett. 103, 072109 (2013)CrossRefGoogle Scholar
  20. 20.
    S.K. Pandey, S.K. Pandey, V. Awasthi, S. Mukherjee, Nanosci. Nanotechnol. Lett. 6, 146–152 (2014)CrossRefGoogle Scholar
  21. 21.
    S.K. Pandey, S.K. Pandey, U.P. Deshpande, V. Awasthi, A. Kumar, M. Gupta, S. Mukherjee, Semicond. Sci. Technol. 28, 085014 (2013)CrossRefGoogle Scholar
  22. 22.
    S.K. Pandey, S.K. Pandey, V. Awasthi, A. Kumar, U.P. Deshpande, M. Gupta, S. Mukherjee, Bull. Mat. Sci. Accepted, (2013)Google Scholar
  23. 23.
    S.K. Pandey, S.K. Pandey, V. Awasthi, U.P. Deshpandey, M. Gupta, S. Mukherjee, J. Appl. Phys. 114, 163107 (2013)CrossRefGoogle Scholar
  24. 24.
    S.K. Pandey, S.K. Pandey, S. Verma, M. Gupta, V. Sathe, S. Mukherjee, J. Mat. Sci. Mat. Electron. 25, 772–777 (2014)CrossRefGoogle Scholar
  25. 25.
    J.A. Frantz, R.Y. Bekele, V.Q. Nguyen, J.S. Sanghera, A. Bruce, S.V. Frolov, M. Cyrus, I.D. Aggarwal, Thin Solid Films 519, 7763–7765 (2011)CrossRefGoogle Scholar
  26. 26.
    A.J. Zhou, D. Mei, X.G. Kong, X.H. Xu, L.D. Feng, X.Y. Dai, T. Gao, J.Z. Li, Thin Solid Films 520, 6068–6074 (2012)CrossRefGoogle Scholar
  27. 27.
    Li Zhang, Qing He, Wei-Long Jiang, Fang-Fang Liu, Chang-Jian Li, Yun Sun, Sol. Energy Mat. Sol. Cells 93, 114–118 (2009)CrossRefGoogle Scholar
  28. 28.
    B. Dimmler, M. Powalla, R. Schaetter, Cis solar modules: pilot production at wuerth solar. In: Proceedings of the 31st photovoltaic specialist’s conference, Hawaii, (2005), p. 189Google Scholar
  29. 29.
    Robert Birkmire, Erten Eser, Shaman Fields, William Shafarman, Prog. Photovolt. Res. Appl. 13, 141 (2005)CrossRefGoogle Scholar
  30. 30.
    William N. Shafarman, Jie Zhu, Thin Solid Films 473, 361–362 (2000)Google Scholar
  31. 31.
    J. Kessler, C. Chityuttakan, J. Scholdstrom, L. Stolt, Thin Solid Films 1, 431–432 (2003)Google Scholar
  32. 32.
    Y.H. Jo, B.C. Mohanty, Y.S. Cho, Solar Energy 84, 2213–2218 (2010)CrossRefGoogle Scholar
  33. 33.
    Y.B. He, T. Kramer, A. Polity, R. Gregor, W. Kriegseis, I. Osterreicher, D. Hasseilkamp, B.K. Meyer, Thin Solid Films 431–432, 231–236 (2003)CrossRefGoogle Scholar
  34. 34.
    K.S. Ramaiah, Thin Films and Nanostruc. Cu (In1−xGax)Se2 Based Thin Film Sol. Cells. Volume 35, (2010)Google Scholar
  35. 35.
    M.E. Beck, A. Swartzlander-Guest, R. Matson, J. Keane, R. Noufi, Sol. Energy Mat. Sol. Cells 64, 135 (2000)CrossRefGoogle Scholar
  36. 36.
    C. Lei, A. Rockett, I.M. Robertson, W.N. Shafarman, M. Beck, J. Appl. Phys. 100, 073518 (2006)CrossRefGoogle Scholar
  37. 37.
    D. Liao, A. Rockett, J. Appl. Phys. 91, 1978 (2002)CrossRefGoogle Scholar
  38. 38.
    C.S. Barett, Structure of Metals, Crystallographic Methods, Principles and Data (McGraw-Hill, New-York, 1956), p. 156Google Scholar
  39. 39.
    A. Adachi, A. Kudo, T. Sakata, Bull. Chem. Soc. Jpn. 68, 3283 (1995)CrossRefGoogle Scholar
  40. 40.
    J.I. Pankove, Optical Processes in Semiconductors (Prentice-Hall, Englewood Cliffs, NJ, 1971)Google Scholar
  41. 41.
    N.M. Shah, J.R. Ray, K.J. Patel, V.A. Kheraj, M.S. Desai, C.J. Panchal et al., Thin Solid Films 517, 3639–3644 (2009)CrossRefGoogle Scholar
  42. 42.
    R. Noufi, R. Axton, C. Herrington, S.K. Deb, Appl. Phys. Lett. 45, 668 (1984)CrossRefGoogle Scholar
  43. 43.
    Tokio Nakadaa, Masashi Hongoa, Eiji Hayashib, Thin Solid Films 43–432, 242–248 (2003)CrossRefGoogle Scholar
  44. 44.
    M. Bouttemy, P. Tran-Van, I. Gerard, T. Hildebrandt, A. Causier, J.L. Pelouard, G. Dagher, Z. Jehl, N. Naghavi, G. Voorwinden, B. Dimmler, M. Powalla, J.F. Guillemoles, D. Lincot, A. Etcheberry, Thin Solid Films 519, 7207–7211 (2011)CrossRefGoogle Scholar
  45. 45.
    S.T. Lakshmikumar, A.C. Rastogi, J. Appl. Phys. 79, 3585 (1996)CrossRefGoogle Scholar
  46. 46.
    Fabrice M. Courtel, Royston W. Paynter, Benoıt Marsan, Mario Morin, Chem. Mater. 21, 3752–3762 (2009)CrossRefGoogle Scholar
  47. 47.
    Toshiyuki Yamaguchi, Jiro Matsufusa, Akira Yoshida, J. Appl. Phys. 72, 5657 (1992)CrossRefGoogle Scholar
  48. 48.
    T.P. Hsieh, C.C. Chuang, C.S. Wu, J.C. Chang, J.W. Guo, W.C. Chen, Solid State Electron. 56, 175 (2011)CrossRefGoogle Scholar
  49. 49.
    Yu. Zhou, Chuanpeng Yan, Yong Yan, Yanxia Zhang, Tao Huang, Wen Huang, Shasha Li, Lian Liu, Yong Zhang, Yong Zhao, Appl. Surf. Sci. 258, 8527–8532 (2012)CrossRefGoogle Scholar
  50. 50.
    R. Noufi, R. Axton, D. Cahen, S.K. Deb, 17th IEEE Photovoltaic specialist conference, Orlando, (1984), p. 927Google Scholar
  51. 51.
    S.-H. Wei, S.B. Zhang, A. Zunger, Appl. Phys. Lett. 72, 3199 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Vishnu Awasthi
    • 1
  • Sushil K. Pandey
    • 1
  • Saurabh K. Pandey
    • 1
  • Shruti Verma
    • 1
  • Mukul Gupta
    • 2
  • Shaibal Mukherjee
    • 1
  1. 1.Hybrid Nanodevice Research Group (HNRG), Discipline of Electrical EngineeringIndian Institute of TechnologyIndoreIndia
  2. 2.University Grants Commission Department of Atomic Energy (UGC, DAE) Consortium for Scientific ResearchIndoreIndia

Personalised recommendations