Optical and magnetic properties of Fe-doped CdS dilute magnetic semiconducting nanorods

  • Kamaldeep KaurEmail author
  • Gurmeet Singh Lotey
  • N. K. Verma


Solvothermal technique has been used for the synthesis of Fe-doped CdS nanorods (Cd1−xFexS) with (x = 0.0, 0.3, 0.5, 1.0, 1.5). Structural analysis carried out using X-ray diffraction reveals the formation of defect-free hexagonal phase of the CdS nanorods. Energy dispersive X-ray analysis confirms the presence of elements Cd, Fe and S in their stoichiometric ratio. Blue shift in the band gap, as compared to the bulk CdS, has been observed in UV–visible spectra. The decrease in the intensity of the photoluminescence peaks confirms the quenching of spectra upon Fe doping. Transmission electron microscopy, high-resolution transmission electron microscopy and selected area diffraction studies confirm the polycrystalline nature as well as growth of CdS nanorods along (112) plane. Magnetic study confirms the ferromagnetic nature of the synthesized nanorods. Magnetic saturation has been found to be 0.187, 0.300, 0.450, 0.675, 0.600 emu g−1, respectively, for undoped, 3, 5, 10, and 15 % Fe-doped CdS.


Dopant Concentration Select Area Electron Diffraction Pattern Dilute Magnetic Semiconductor Magnetic Polaron Sodium Sulphide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



One of the authors—Kamaldeep Kaur—gratefully acknowledges UGC, Government of India, for awarding her Maulana Azad National Fellowship to carry out this research work.


  1. 1.
    H.S. Hsu, J.C.A. Huang, Y.H. Huang, Y.F. Liao, M.Z. Lin, C.H. Lee, J.F. Lee, S.F. Chen, L.Y. Lai, C.P. Liu, Appl. Phys. Lett. 88, 242507 (2006)CrossRefGoogle Scholar
  2. 2.
    M.E. Hagary, S. Soltan, J. Appl. Phys. 112, 043907 (2012)CrossRefGoogle Scholar
  3. 3.
    D.P. Norton, S.J. Pearton, A.F. Hebard, N. Theodoropoulou, L.A. Boatner, R.G. Wilson, Appl. Phys. Lett. 82, 2 (2003)CrossRefGoogle Scholar
  4. 4.
    R. Singh, J. Magn. Magn. Mater. 346, 58 (2013)CrossRefGoogle Scholar
  5. 5.
    C. Zener, Phys. Rev. 81, 440 (1951)CrossRefGoogle Scholar
  6. 6.
    K. Kaur, G.S. Lotey, N.K. Verma, J. Mater. Sci. Mater. Electron. 25, 311 (2014)CrossRefGoogle Scholar
  7. 7.
    T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)CrossRefGoogle Scholar
  8. 8.
    J.K. Furdyna, J. Appl. Phys. 64, R29 (1988)CrossRefGoogle Scholar
  9. 9.
    C. Liu, F. Yun, H. Morko, J. Mater. Sci. Mater. Electron. 16, 555 (2005)CrossRefGoogle Scholar
  10. 10.
    K. Kaur, G.S. Lotey, N.K. Verma, Mater. Chem. Phys. 143, 41 (2013)CrossRefGoogle Scholar
  11. 11.
    K. Kaur, G.S. Lotey, N.K. Verma, Mater. Sci. Semicond. Process. 19, 6 (2014)CrossRefGoogle Scholar
  12. 12.
    G.S. Lotey, Z. Jindal, V. Singhia, N.K. Verma, Mater. Sci. Semicond. Process. 16, 2044 (2013)CrossRefGoogle Scholar
  13. 13.
    H. Sekhar, D. Narayana Rao, J. Alloys Compd. 517, 103 (2012)CrossRefGoogle Scholar
  14. 14.
    B.D. Cullity, S.R. Stock, Elementary of X-ray diffraction, 3rd edn. (Prentice-Hall, Englewood Cliffs, 2001)Google Scholar
  15. 15.
    G.S. Lotey, N.K. Verma, J. Nanopart. Res. 13, 5397 (2011)CrossRefGoogle Scholar
  16. 16.
    M. Bangal, S. Ashtaputre, S. Marathe, A. Ethiraj, N. Hebalkar, S.W. Gosavi, J. Urban, S.K. Kulkarni, Semiconductor nanoparticle. Hyperfine Interact. 160, 81–94 (2005)CrossRefGoogle Scholar
  17. 17.
    B. Sambandam, R.J.V. Michael, N. Rajendran, S. Arumugam, P.T. Manoharan, J. Nanopart. Res. 14, 1067 (2012)CrossRefGoogle Scholar
  18. 18.
    Z. Jindal, N.K. Verma, J. Mater. Sci. 43, 6539 (2008)CrossRefGoogle Scholar
  19. 19.
    R. Elilarassi, G. Chandrasekaran, J. Mater. Sci. Mater. Electron. 24, 96 (2013)CrossRefGoogle Scholar
  20. 20.
    M.V. Limaye, S. Singh, R. Das, P. Poddar, S.K. Kulkarni, J. Solid State Chem. 184, 391 (2011)CrossRefGoogle Scholar
  21. 21.
    P.H. Borse, N. Deshmukh, J. Mater. Sci. 34, 6087–6099 (1999)CrossRefGoogle Scholar
  22. 22.
    S. Kumar, N.K. Verma, J. Mater. Sci. Mater. Electron. 25, 785 (2014)CrossRefGoogle Scholar
  23. 23.
    S. Salimian, S.F. Shayesteh, J. Supercond. Nov. Magn. 25, 2009 (2012)CrossRefGoogle Scholar
  24. 24.
    S. Kumar, Z. Jindal, N. Kumari, N.K. Verma, J. Nanopart. Res. 13, 5465 (2011)CrossRefGoogle Scholar
  25. 25.
    G. Murali, D.A. Reddy, B.P. Prakasha, R.P. Vijayalakshmi, B.K. Reddya, R. Venugopal, Physica B Condens. Matter 407, 2084 (2012)CrossRefGoogle Scholar
  26. 26.
    S. Kumar, N.K. Verma, J. Mater. Sci. Mater. Electron. 25, 785 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Kamaldeep Kaur
    • 1
    Email author
  • Gurmeet Singh Lotey
    • 1
  • N. K. Verma
    • 1
  1. 1.Nano Research Lab, School of Physics and Materials ScienceThapar UniversityPatialaIndia

Personalised recommendations