Novel thermal interface materials: boron nitride nanofiber and indium composites for electronics heat dissipation applications

  • Xin Luo
  • Yong Zhang
  • Carl Zandén
  • Murali Murugesan
  • Yu Cao
  • Lilei Ye
  • Johan LiuEmail author


With increased power density and continued miniaturization, effective thermal dissipation is of significant importance for operational lifetime and reliability of electronic system. Advanced thermal interface materials (TIMs) with excellent thermal performance need to be designed and developed. Here we report novel TIMs consisted of boron nitride (BN) nanofibers and pure indium (In) solder for heat dissipation applications. The BN nanofibers are fabricated by electrospinning process and nitridation treatment. After surface metallization by sputtering, the porous BN film is infiltrated with liquid indium by squeeze casting to form the final solid composites. The new composites show the in-plane and through-plane thermal conductivity respectively of 60 and 20 W/m K. The direction dependence thermal properties of the TIM are due to the anisotropic thermal performance of BN nanofibers in the composite. A low thermal contact resistance of 0.2 K mm2/W is also achieved at the interface between this new composite and copper substrate. These competent thermal properties demonstrate the great potential of the BN–In TIMs in thermal management for electronic system.


B2O3 Boron Nitride Thermal Performance Squeeze Casting Hexagonal Boron Nitride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the State Scholarship Fund (CSC), EU programs “Eranet Nano-TIM”, “Nanotherm”, “Smartpower”, SSF program “Scalable Nanomaterials and Solution Processable Thermoelectric Generators” with the contract No. EM11-0002, the Chinese Ministry for Science and Technology within the international collaboration program within the contract No. 2010DFA14450, Shanghai Science and Technology Program (12JC1403900) and NSFC (51272153). This work is also carried out within the Sustainable Production Initiative and the Production Area of Advance at Chalmers.


  1. 1.
    B. Carlberg, Ph D thesis, Chalmers University of technology (2012)Google Scholar
  2. 2.
    ITRS, International Technology Roadmap for Semiconductors (2007)Google Scholar
  3. 3.
    M.A. Raza, A.V.K. Westwood, A.P. Brown, C. Stirling, J. Mater. Sci. Mater. Electron. 23, 1855 (2012)CrossRefGoogle Scholar
  4. 4.
    D.D.L. Chung, J. Mater. Eng. Perform. 10, 56 (2001)CrossRefGoogle Scholar
  5. 5.
    R. Prasher, Proc. IEEE 94, 1571 (2006)CrossRefGoogle Scholar
  6. 6.
    H. Xiao, X.Y. Li, Y.X. Zhu, J.L. Yang, J. Chen, F. Guo, J. Mater. Sci. Mater. Electron. 24, 2527 (2013)CrossRefGoogle Scholar
  7. 7.
    Y.Y. Wei, J.G. Duh, J. Mater. Sci. Mater. Electron. 9, 373 (1998)CrossRefGoogle Scholar
  8. 8.
    H.W. Miao, J.G. Duh, B.S. Chiou, J. Mater. Sci. Mater. Electron. 11, 609 (2000)CrossRefGoogle Scholar
  9. 9.
    R. Darveaux, I. Turlik, IEEE Trans. Compon. Hybrids Manuf. 13, 929 (1990)Google Scholar
  10. 10.
    C. Deppisch, T. Fitzgerald, A. Raman, H. Fay, JOM 58, 67 (2006)CrossRefGoogle Scholar
  11. 11.
    M. Plötner, B. Donat, A. Benke, Cryogenics 31, 159 (1991)CrossRefGoogle Scholar
  12. 12.
    C. Björn, W. Teng, L. Johan, S. Dongkai, Microelectron. Int. 26, 28 (2009)CrossRefGoogle Scholar
  13. 13.
    B. Carlberg, L.L. Ye, J. Liu, Small 7, 3057 (2011)CrossRefGoogle Scholar
  14. 14.
    B. Carlberg, L.L. Ye, J. Liu, Mater. Lett. 75, 229 (2012)CrossRefGoogle Scholar
  15. 15.
    B.T. Kelly, J. Nucl. Mater. 68, 9 (1977)CrossRefGoogle Scholar
  16. 16.
    E.K. Sichel, R.E. Miller, M.S. Abrahams, C.J. Buiocchi, Phys. Rev. B 13, 4607 (1976)CrossRefGoogle Scholar
  17. 17.
    R.T. Paine, C.K. Narula, Chem. Rev. 90, 73 (1990)CrossRefGoogle Scholar
  18. 18.
    M. Sajjad, M. Ahmadi, M.-F. Guinel, Y. Lin, P. Feng, J. Mater. Sci. 48, 2543 (2013)CrossRefGoogle Scholar
  19. 19.
    W.L. Song, P. Wang, L. Cao, A. Anderson, M.J. Meziani, A.J. Farr, Y.P. Sun, Angew. Chem. Int. Edit. 51, 6498 (2012)CrossRefGoogle Scholar
  20. 20.
    Y. Qiu, J. Yu, J. Rafique, J. Yin, X. Bai, E. Wang, J. Phys. Chem. C 113, 11228 (2009)CrossRefGoogle Scholar
  21. 21.
    Y. Qiu, J. Yu, J. Yin, C. Tan, X. Zhou, X. Bai, E. Wang, Nanotechnology 20, 345603 (2009)CrossRefGoogle Scholar
  22. 22.
    T.Y.R. Lee, Ph D thesis, Purdue University (1977)Google Scholar
  23. 23.
    O.M. Moon, B.C. Kang, S.B. Lee, J.H. Boo, Thin Solid Films 464–465, 164 (2004)CrossRefGoogle Scholar
  24. 24.
    H.T. Tsou, W. Kowbel, Surf. Coat. Tech. 79, 139 (1996)CrossRefGoogle Scholar
  25. 25.
    D. Buc, I. Bello, M. Caplovicova, M. Mikula, J. Kovac, I. Hotovy, Y.M. Chong, G.G. Siu, Thin Solid Films 515, 8723 (2007)CrossRefGoogle Scholar
  26. 26.
    M. Hajian, M. Reisi, G. Koohmareh, A.Z. Jam, J. Polym. Res. 19, 1 (2012)CrossRefGoogle Scholar
  27. 27.
    K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th edn. (Wiley, New York, 2006), pp. 333–402Google Scholar
  28. 28.
    M. Hubáček, T. Sato, T. Ishii, J. Solid State Chem. 109, 384 (1994)CrossRefGoogle Scholar
  29. 29.
    J. Thomas, N.E. Weston, T.E. O’Connor, J. Am. Chel. Soc. 84, 4619 (1962)CrossRefGoogle Scholar
  30. 30.
    A. Perrone, A.P. Caricato, A. Luches, M. Dinescu, C. Ghica, V. Sandu, A. Andrei, Appl. Surf. Sci. 133, 239 (1998)CrossRefGoogle Scholar
  31. 31.
    N. Laidani, M. Anderle, R. Canteri, L. Elia, A. Luches, M. Martino, V. Micheli, G. Speranza, Appl. Surf. Sci. 157, 135 (2000)CrossRefGoogle Scholar
  32. 32.
    A. Essafti, E. Ech-chamikh, J.L.G. Fierro, Diam. Relat. Mater. 14, 1663 (2005)CrossRefGoogle Scholar
  33. 33.
    S. Weissmantel, G. Reisse, B. Keiper, S. Schulze, Diam. Relat. Mater. 8, 377 (1999)CrossRefGoogle Scholar
  34. 34.
    C.H. Henager Jr, W.T. Pawlewicz, Appl. Optics 32, 91 (1993)CrossRefGoogle Scholar
  35. 35.
    R. Zedlitz, M. Heintze, M.B. Schubert, J. Non Cryst. Solids 198–200, Part 1, 403 (1996)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Xin Luo
    • 1
    • 2
  • Yong Zhang
    • 1
    • 2
  • Carl Zandén
    • 2
  • Murali Murugesan
    • 2
  • Yu Cao
    • 3
  • Lilei Ye
    • 4
  • Johan Liu
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of New Displays and System Applications and SMIT Center, School of Mechanical Engineering and AutomationShanghai UniversityShanghaiChina
  2. 2.Department of Microtechnology and Nanoscience (MC2), SMIT CenterChalmers University of TechnologyGöteborgSweden
  3. 3.Department of Materials and Manufacturing TechnologyChalmers University of TechnologyGöteborgSweden
  4. 4.SHT Smart High-Tech ABGöteborgSweden

Personalised recommendations