Advertisement

Major effects on microstructure and electrical properties of ZnO-based linear resistance ceramics with MgO changes

  • Jianfeng Zhu
  • Jingjing Wang
  • Yong Zhou
  • Fen Wang
Article

Abstract

The ZnO-based linear resistance ceramics were fabricated from ZnO–Al2O3–MgO–TiO2 at 1,340 °C. The effect of the different doping amounts of MgO on the microstructure and electrical properties were investigated in detail. The optimal sample with the MgO concentration of 7 wt% possesses an energy density of 812 J/cm3 and a resistance temperature coefficient reaches 0.4 × 10−3/°C, which are improved by 8 and 103 %, respectively. Spontaneously, the nonlinear coefficient maintains about 1.15 and the resistivity reaches to 778 Ω cm, increased by 33 %.

Keywords

MgAl2O4 Nonlinear Coefficient ZnAl2O4 Boundary Resistivity Resistance Temperature Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Key Project of Chinese Ministry of Education (No. 210218), Scientific and technological project of Wenzhou (H20100079, H20100087), and the Graduate Innovation Fund of Shaanxi University of Science and Technology.

References

  1. 1.
    G.K. Paul, S.K. Sen, Mater. Lett. 57, 742 (2002)CrossRefGoogle Scholar
  2. 2.
    Z.G. Zang, A. Nakamura, J. Temmyo, Opt. Express 21, 11448 (2013)CrossRefGoogle Scholar
  3. 3.
    S. Shirakawa, S. Owada, N. Iimura, K. Kurita, T. Yamazaki, K. Shindo, Y. Yamauchi, IEEE. Trans. Power. Deliv. 3, 183 (1988)CrossRefGoogle Scholar
  4. 4.
    T.K. Gupta, J. Am, Ceram. Soc. 73, 1817 (1990)CrossRefGoogle Scholar
  5. 5.
    S. Bernik, N. Daneu, J. Eur, Ceram. Soc. 27, 3361 (2007)Google Scholar
  6. 6.
    E.R. Leite, M.A.L. Nobre, E. Longo, J.A. Varela, J. Mater. Sci. 31, 5391 (1996)CrossRefGoogle Scholar
  7. 7.
    J.F. Zhu, Y. Zhu, H.B. Yang, F. Wang, J. Mater. Sci. Mater. Electron. 23, 445 (2012)CrossRefGoogle Scholar
  8. 8.
    Y.H. Zhang, J. Han, Mater. Lett. 60, 2522 (2006)CrossRefGoogle Scholar
  9. 9.
    D. Lisjak, I. Zajc, M. Drofenik, J. Jamnik, Solid State Ion. 99, 125 (1997)CrossRefGoogle Scholar
  10. 10.
    M. Shoji, S. Tanaka, S. Shirakawa, S. Yamada, J. Ceram. Soc. Jpn. Int. Ed. 108, 89 (2000)CrossRefGoogle Scholar
  11. 11.
    M. Matbuaka, J. Appl. Phys. 10, 736 (1971)CrossRefGoogle Scholar
  12. 12.
    O. Nina, M. Mitricb, M.V. Nikolicc, D. Minicd, N. Mitrovice, M.M. Risticf, J. Alloys Compd. 471, 271 (2009)Google Scholar
  13. 13.
    S. Bernik, N. Daneu, J. Eur. Ceram. Soc. 27, 3361 (2007)CrossRefGoogle Scholar
  14. 14.
    M. Kunisu, I. Tanaka, T. Yamamoto, T. Suga, T. Mizoguchi, J. Phys.: Condens. Matter. 16, 3801 (2004)Google Scholar
  15. 15.
    N.B. Chen, C.H. Sui, Mater. Sci. Eng. B 126, 16 (2006)CrossRefGoogle Scholar
  16. 16.
    R.L. Coble, U.S. Pat. 20, 3026210 (1962)Google Scholar
  17. 17.
    J. Feng, C.M. Chen, Polymer 41, 7279 (2000)CrossRefGoogle Scholar
  18. 18.
    V. Viswabaskaran, F.D. Gnanam, Appl. Clay Sci. 25, 29 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jianfeng Zhu
    • 1
  • Jingjing Wang
    • 1
  • Yong Zhou
    • 1
  • Fen Wang
    • 1
  1. 1.Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of EducationShaanxi University of Science and TechnologyXi’anChina

Personalised recommendations