Enhancement of room temperature ferromagnetism in Cd1−xNixSe nanoparticles

  • Jaspal SinghEmail author
  • Sanjeev Kumar
  • N. K. Verma


Cd1−xNixSe (x = 0.0, 0.02, 0.05 and 0.1) nanoparticles have been synthesized by chemical route. X-ray diffraction analysis shows crystalline nature of synthesized nanoparticles possessing wurtzite phase having hexagonal structure. Transmission electron microscopy depicts spherical morphology and uniform particle size distribution of pure and Ni-doped CdSe nanoparticles. The blue-shift in band gap has been observed with Ni-doping concentration. Photoluminescence study shows the presence of intrinsic defects (VCd–VSe) in the synthesized nanoparticles. Electron spin resonance (ESR) analysis reveals the long range ferromagnetic ordering in pure and doped nanoparticles. ESR study also indicates that Ni ions exist in +2 oxidation state in host nanoparticles. The magnetic hysteresis (M-H) loops display ferromagnetism at room temperature in pure and Ni-doped CdSe nanoparticles. The increase of ferromagnetic behavior has been observed with Ni-doping concentration. M-H analyses indicate that defects and carrier mediated exchange interactions are responsible for ferromagnetic ordering, in the present study.


Electron Spin Resonance Magnetic Hysteresis Intrinsic Defect Ferromagnetic Resonance Electron Spin Resonance Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge Defense Research and Development Organization (DRDO), India for granting financial support (vide sanction letter no. ERIP/ER/0903766/M/01/1191) to carry out this research work. One of the authors, Jaspal Singh, gratefully acknowledges Thapar University, Patiala, India for providing Teaching Associateship.


  1. 1.
    J.K. Furdyna, J. Appl. Phys. 64, R29 (1988)CrossRefGoogle Scholar
  2. 2.
    F. Mikailzade, Nanostructured materials for magnetoelectronics, ed. by B. Aktas (Springer, New York, 2013)Google Scholar
  3. 3.
    C. Liu, F. Yun, H. Morkoc, J. Mater. Sci. Mater. Electron. 16, 555 (2005)CrossRefGoogle Scholar
  4. 4.
    D.W. Chu, Y.P. Zeng, D.L. Jiang, Solid. State. Commun. 143, 308–312 (2007)CrossRefGoogle Scholar
  5. 5.
    B.T. Jonker, W.C. Chou, A. Petrou, J. Warnock, J. Vac. Sci. Technol. A. 10, 1458 (1992)CrossRefGoogle Scholar
  6. 6.
    M. Elango, K. Gopalakrishnan, S. Vairam, M. Thamilselvan, J. Alloy. Compd. 538, 48 (2012)CrossRefGoogle Scholar
  7. 7.
    T. Dietl, Nat. Mater. 9, 965 (2010)CrossRefGoogle Scholar
  8. 8.
    K. Sato, L. Bergqvist, J. Kudrnovský, P.H. Dederichs, O. Eriksson, I. Turek, B. Sanyal, G. Bouzerar, H.K. Yoshida, V.A. Dinh, T. Fukushima, H. Kizaki, R. Zeller, Rev. Mod. Phys. 82, 1633 (2010)CrossRefGoogle Scholar
  9. 9.
    B. Pal, P.K. Giri, J. Nanosci. Nanotechnol. 11, 9167 (2011)CrossRefGoogle Scholar
  10. 10.
    E. Biegger, L. Staheli, M. Fonin, U. Rudiger, Y.S. Dedkov, J. Appl. Phys. 101, 103912 (2007)CrossRefGoogle Scholar
  11. 11.
    S. Kumar, S. Kumar, N.K. Verma, S.K. Chakarvarti, J. Mater. Sci. Mater. Electron. 22, 901 (2011)CrossRefGoogle Scholar
  12. 12.
    J. Singh, N.K. Verma, J. Supercon, Nov. Magn. 25, 2425 (2012)CrossRefGoogle Scholar
  13. 13.
    B.D. Cullity, Elements of X-ray diffraction, 2nd edn. (Addison-Wesley, Reading MA, 1978)Google Scholar
  14. 14.
    M. Elango, D. Nataraj, K. Prem Nazeer, M. Thamilselvan, Mater. Res. Bull. 47, 1533 (2012)CrossRefGoogle Scholar
  15. 15.
    M. Thambidurai, N. Muthukumarasamy, S. Agilan, N.S. Arul, N. Murugan, R. Balasundaraprabhu, J. Mater. Sci. 46, 3200 (2011)CrossRefGoogle Scholar
  16. 16.
    G. Kortüm, Reflectance spectroscopy: principles, methods, application (Springer, New York, 1969)CrossRefGoogle Scholar
  17. 17.
    A.I. Ekimov, F. Hache, M.C. Schanne-Klein, D. Ricard, C. Flytzanis, I.A. Kudryavtsev, T.V. Yazeva, A.V. Rodina, A.L. Efros, J. Opt. Soc. Am. B. 10, 100 (1993)CrossRefGoogle Scholar
  18. 18.
    V. Babentsov, J. Riegler, J. Schneider, O. Ehlert, T. Nann, M. Fiederle, J. Cryst. Growth. 280, 502 (2005)CrossRefGoogle Scholar
  19. 19.
    P.H. Borse, N. Deshmukh, R.F. Shinde, S.K. Date, S.K. Kulkarni, J. Mater. Sci. 34, 6087 (1999)CrossRefGoogle Scholar
  20. 20.
    J. Singh, N.K. Verma, J. Mater. Sci. Mater. Electron. 24, 4464 (2013)CrossRefGoogle Scholar
  21. 21.
    H. Sekhar, D.N. Rao, J. Alloy, Compd. 517, 103 (2012)CrossRefGoogle Scholar
  22. 22.
    S.B. Singh, M.V. Limaye, S.K. Date, S. Gokhale, S.K. Kulkarni, Phys. Rev. B. 80, 235421 (2009)CrossRefGoogle Scholar
  23. 23.
    J.A. Weil, J.R. Bolton, J.E. Wertz, Electron paramagnetic resonance: elementary theory and practical applications (Wiley, New York, 1994)Google Scholar
  24. 24.
    S. Neeleshwar, C.L. Chen, C.B. Tsai, Y.Y. Chen, C.C. Chen, S.G. Shyu, M.S. Seehra, Phys. Rev. B. 71, 201307 (2005)CrossRefGoogle Scholar
  25. 25.
    R.H. Kodama, S.A. Makhlouf, A.E. Berkowitz, Phys. Rev. Lett. 79, 1393 (1997)CrossRefGoogle Scholar
  26. 26.
    X. He, W. Zhong, C.T. Au, Y. Du, Nanoscale. Res. Lett. 8, 446 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Nano Research Lab, School of Physics and Materials ScienceThapar UniversityPatialaIndia
  2. 2.Department of Applied SciencesPEC University of TechnologyChandigarhIndia

Personalised recommendations