Nonlinear optoelectronic materials formed by push–pull (bi)thiophene derivatives functionalized with di(tri)cyanovinyl acceptor groups

  • A. Wojciechowski
  • M. Manuela M. Raposo
  • M. Cidália R. Castro
  • W. Kuznik
  • I. Fuks-Janczarek
  • M. Pokladko-Kowar
  • F. Bureš


Novel nonlinear optical (NLO) materials based on six novel NLO chromophores featuring di(tri)cyanovinyl acceptor linked to (bi)thiophene heterocyclic donor system were fabricated for the first time in polymethyl methacrylate matrices with a 1,064 nm laser working in the 20 ns time pulse regime. Absorption spectra and DFT calculations were also done. This multidisciplinary study showed that tayloring of the optical (linear and nonlinear) properties in the desired direction can be achieved by increasing the length of the π-conjugated heterocyclic system (thiophene vs. bithiophene), the strength of the electron donor groups (H → MeO/EtO → Et2N) as well as the strength of the electron acceptor moieties (dicyanovinyl vs. tricyanovinyl, two vs. three electron withdrawing cyano groups). Due to the relatively high and tunable second-order susceptibilities (0.08–6.45 pm/V at wavelength 1,064 nm), the studied push–pull chromophores can be denoted as promising second-order NLO chromophores.


Thiophene Knoevenagel Condensation TCNE Bithiophene Acceptor Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Thanks are due to Fundação para a Ciência e Tecnologia (Portugal) for financial support to the portuguese NMR network (PTNMR, Bruker Avance III 400-Univ. Minho), FCT and FEDER (European Fund for Regional Development)-COMPETE-QREN-EU for financial support to the research centre CQ/UM [PEst-C/QUI/UI0686/2013 (FCOMP-01-0124-FEDER-037302)] and a PhD grant to M. C. R. Castro (SFRH/BD/78037/2011). F. B. is indebted to the Czech Science Foundation (13-01061S).


  1. 1.
    J. Kulhánek, F. Bureš, J. Opršal, W. Kuznik, T. Mikysek, A. Růžička, 1,4-Phenylene and 2,5-thienylene π-linkers in charge-transfer chromophores. Asian J. Org. Chem. 2, 422–431 (2013)CrossRefGoogle Scholar
  2. 2.
    C.R. Moylan, B.J. McNellis, L.C. Nathan, M.A. Marques, E.L. Hermstad, B.A. Brichler, Challenging the auxiliary donor effect on molecular hyperpolarizability in thiophene-containing nonlinear chromophores: X-ray crystallographic and optical measurements on two new isomeric chromophores. J. Org. Chem. 69, 8239–8243 (2004)CrossRefGoogle Scholar
  3. 3.
    I.D.L. Albert, T.J. Marks, M.A. Ratner, Large molecular hyperpolarizabilities. quantitative analysis of aromaticity and auxiliary donor–acceptor effects. J. Am. Chem. Soc. 119, 6575–6582 (1997)CrossRefGoogle Scholar
  4. 4.
    K.Y. Wong, A.K.Y. Jen, V.P. Rao, K.J. Drost, Theoretical and experimental studies of the molecular second order nonlinear optical responses of heteroaromatic compounds. J. Chem. Phys. 100, 6818–6825 (1994)CrossRefGoogle Scholar
  5. 5.
    F. Bureš, Dicyano-substituted acceptor units in push–pull chromophores with intramolecular charge-transfer. Chem. Listy 107, 834–842 (2013)Google Scholar
  6. 6.
    M. Kivala, F. Diderich, Acetylene-derived strong organic acceptors for planar and nonplanar push–pull chromophores. Acc. Chem. Res. 42, 235–248 (2009)CrossRefGoogle Scholar
  7. 7.
    N.N.P. Moonen, C. Boudon, J.P. Gisselbrecht, P. Seiler, M. Gross, F. Diederich, Cyanoethynylethenes: a class of powerful electron acceptors for molecular scaffolding. Angew. Chem. Int. Ed. 41, 3044–3047 (2002)CrossRefGoogle Scholar
  8. 8.
    N.N.P. Moonen, W.C. Pomerantz, R. Gist, C. Boudon, J.P. Gisselbrecht, T. Kawai, A. Kishioka, M. Gross, M. Irie, F. Diederich, Donor-substituted cyanoethynylethenes: π-conjugation and band-gap tuning in strong charge-transfer chromophores. Chem. Eur. J. 11, 3325–3341 (2005)CrossRefGoogle Scholar
  9. 9.
    F. Bureš, W.B. Schweizer, J.C. May, C. Boudon, J.P. Gisselbrecht, M. Gross, I. Biaggio, F. Diederich, Property tuning in charge-transfer chromophores by systematic modulation of the spacer between donor and acceptor. Chem. Eur. J. 13, 5378–5387 (2007)CrossRefGoogle Scholar
  10. 10.
    T. Michinobu, J.C. May, J.H. Lim, C. Boudon, J.P. Gisselbrecht, P. Seiler, M. Gross, I. Biaggio, F. Diederich, A new class of organic donor–acceptor molecules with large third-order optical nonlinearities. Chem. Commun. 2005, 737–739 (2005)Google Scholar
  11. 11.
    M.M.M. Raposo, A.M.C. Fonseca, G. Kirsch, Synthesis of donor–acceptor substituted oligothiophenes by Stille coupling. Tetrahedron 60, 4071–4078 (2004)CrossRefGoogle Scholar
  12. 12.
    M.M. Oliva, J. Casado, M.M.M. Raposo, A.M.C. Fonseca, H. Hartmann, V. Hernández, J.T.L. Navarrete, Structure–property relationships in push–pull amino/cyanovinyl end-capped oligothiophenes: quantum chemical and experimental studies. J. Org. Chem. 71, 7509–7520 (2006)CrossRefGoogle Scholar
  13. 13.
    F. Würthner, F. Effenberger, R. Wortmann, P. Krämer, Second-order polarizability of donor–acceptor substituted oligothiophenes: substituent variation and conjugation length dependence. Chem. Phys. 173, 305–314 (1993)CrossRefGoogle Scholar
  14. 14.
    F. Steybe, F. Effenberger, S. Beckman, P. Krämer, C. Glania, R. Wortmann, Enhanced nonlinear optical properties and thermal stability of donor–acceptor substituted oligothiophenes. Chem. Phys. 219, 317–331 (1997)CrossRefGoogle Scholar
  15. 15.
    M.G. Hutchings, I. Ferguson, D.J. McGeein, J.O. Morley, J. Zyss, I. Ledoux, Quadratic non-linear optical properties of some donor–acceptor substituted thiophenes. J. Chem. Soc. Perkin Trans. 2, 171–176 (1996)Google Scholar
  16. 16.
    F. Würthner, C. Thalacker, R. Matschiner, K. Lukaszuk, R. Wortmann, Optimization of neutrocyanine chromophores based on five-membered heterocycles for photorefractive applicationsm. Chem. Commun. 1998, 1739–1740 (1998)Google Scholar
  17. 17.
    M.M.M. Raposo, A.M.R.C. Sousa, G. Kirsch, F. Ferreira, M. Belsey, E. Matos Gomes, A.M.C. Fonseca, Synthesis of tricyanovinyl-substituted thienylpyrroles and characterization of the solvatochromic, electrochemical and non-linear optical properties. Tetrahedron 61, 11991–11998 (2005)CrossRefGoogle Scholar
  18. 18.
    M.M.M. Raposo, A.M.R.C. Sousa, G. Kirsch, P. Cardoso, M. Belsey, E. Matos Gomes, A.M.C. Fonseca, Synthesis and characterization of dicyanovinyl-substituted thienylpyrroles as new nonlinear optical chromophores. Org. Lett. 8, 3681–3684 (2006)CrossRefGoogle Scholar
  19. 19.
    C. Herbivo, A. Comel, G. Kirsch, A.M.C. Fonseca, M. Belsley, M.M.M. Raposo, Synthesis and characterization of novel, thermally stable 2-aryl-5-dicyanovinylthiophenes and 5-aryl-50-dicyanovinyl-2, 20-bithiophenes as potentially promising non-linear optical materials. Dyes Pigm. 86, 217–226 (2010)CrossRefGoogle Scholar
  20. 20.
    M.C.R. Castro, M. Belsley, A.M.C. Fonseca, M.M.M. Raposo, Synthesis and characterization of novel second-order NLO-chromophores bearing pyrrole as an electron donor group. Tetrahedron 68, 8147–8155 (2012)CrossRefGoogle Scholar
  21. 21.
    E. Genin, V. Hugues, G. Clermont, C. Herbivo, A. Comel, M.C.R. Castro, M.M.M. Raposo, M. Blanchard-Desce, Fluorescence and two-photon absorption of push–pull aryl(bi)thiophenes: structure–property relationships. Photochem. Photobiol. Sci. 11, 1756–1766 (2012)CrossRefGoogle Scholar
  22. 22.
    I.F. Perepichka, D.F. Perepichka (eds.) Handbook of Thiophene-Based Materials, Applications in Organic Electronics and Photonics, vol. 1 and 2 (Wiley, Chicester, 2009)Google Scholar
  23. 23.
    M.G. Kuzyk, Using fundamental principles to understand and optimize nonlinear-optical materials. J. Mater. Chem. 19, 7444–7465 (2009)CrossRefGoogle Scholar
  24. 24.
    J.C. May, I. Biaggio, F. Bureš, F. Diederich, Extended conjugation and donor–acceptor substitution to improve the third-order optical nonlinearity of small molecules. Appl. Phys. Lett. 90, 251106 (2007)CrossRefGoogle Scholar
  25. 25.
    D.R. Kanis, M.A. Ratner, T.J. Marks, Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects. Chem. Rev. 94, 195–242 (1994)CrossRefGoogle Scholar
  26. 26.
    J.L. Brédas, C. Adant, P. Tackx, A. Persoons, Third-order nonlinear optical response in organic materials: theoretical and experimental aspects. Chem. Rev. 94, 243–278 (1994)CrossRefGoogle Scholar
  27. 27.
    L.R. Dalton, Rational design of organic electro-optic materials. J. Phys. Condens. Matter 15, R897–R934 (2003)CrossRefGoogle Scholar
  28. 28.
    F. Bureš, O. Pytela, M. Kivala, F. Diederich, Solvatochromism as an efficient tool to study N,N-dimethylamino- and cyano-substituted p-conjugated molecules with an intramolecular charge-transfer absorption. J. Phys. Org. Chem. 24, 274–281 (2011)CrossRefGoogle Scholar
  29. 29.
    M.M.M. Raposo, G. Kirsch, Formylation, dicyanovinylation and tricyanovinylation of 5-alkoxy- and 5-amino-substituted 2,2-bithiophenes. Tetrahedron 59, 4891–4899 (2003)CrossRefGoogle Scholar
  30. 30.
    M.M.M. Raposo, G. Kirsch, A combination of Friedel-crafts and Lawesson reactions to 5-substituted 2,2′-bithiophenes. Heterocycles 55, 1487–1498 (2001)CrossRefGoogle Scholar
  31. 31.
    F. Texier-Boullet, A. Foucad, Knoevenagel condensation catalyzed by aluminium oxide. Tetrahedron Lett. 23, 4927–4928 (1982)CrossRefGoogle Scholar
  32. 32.
    J.S. Yadav, B.V.S. Reddy, A.K. Basak, B. Visali, A.V. Narsaiah, K. Nagaiah Phosphane-catalyzed knoevenagel condensation: a facile Synthesis of α-cyanoacrylates and α-cyanoacrylonitriles. Eur. J. Org. Chem. 2004, 546–551 (2004)Google Scholar
  33. 33.
    S.K. Kurtz, T.T. Perry, A powder technique for the evaluation of nonlinear optical materials. J. Appl. Phys. 39, 3798–3812 (1968)CrossRefGoogle Scholar
  34. 34.
    T. Kolev, I.V. Kityk, J. Ebothe, Intrinsic hyperpolarizability of 3-dicyanomethylene-5,5-dimethyl-1-[2-(4-hydroxyphenyl)ethenyl]-cyclohexene nanocrystallites incorporated into the photopolymer matrices. Chem. Phys. Lett. 443, 309–312 (2007)CrossRefGoogle Scholar
  35. 35.
    A. Migalska-Zalas, Z. Sofiani, B. Sahraoui, I.V. Kityk, V. Yuvshenko, J.L. Fillaut, J. Perruchon, T.J.J. Muller, χ (2) grating in Ru derivative chromophores incorporated within the PMMA polymer matrices. J. Phys. Chem. B 108, 14942–14947 (2004)CrossRefGoogle Scholar
  36. 36.
    P.N. Prasad, D.J. Williams, Introduction to Nonlinear Optical Effects in Organic Molecules and Polymers (Wiley, New York, 1991)Google Scholar
  37. 37.
    D.S. Chemla, J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals (Academic Press, Orlando, 1987)Google Scholar
  38. 38.
    F. Bureš, H. Čermáková, J. Kulhánek, M. Ludwig, W. Kuznik, I.V. Kityk, T. Mikysek, A. Růžička, Structure–property relationships and nonlinear optical effects in donor-substituted dicyanopyrazine-derived push–pull chromophores with enlarged and varied π-linkers. Eur. J. Org. Chem. 2012, 529–538 (2012)Google Scholar
  39. 39.
    J. Kulhánek, F. Bureš, Imidazole as a parent π-conjugated backbone in charge-transfer chromophores. Beilstein J. Org. Chem. 8, 25–49 (2012)CrossRefGoogle Scholar
  40. 40.
    T. Kolev, B. Koleva, J. Kasperczyk, I.V. Kityk, S. Tkaczyk, M. Spiteler, A.H. Reshak, W. Kuznik, Novel nonlinear optical materials based on dihydropyridine organic chromophore deposited on mica substrate. J. Mater. Sci. Mater. Electron. 20, 1073–1077 (2009)CrossRefGoogle Scholar
  41. 41.
    N.V. Kamanina, S.V. Serov, N.A. Shurpo, S.V. Likhomonova, D.N. Timonin, P.V. Kuzhakov, N.N. Roshkova, Polyimide-fullerene nanostructured materials for nonlinear optics and solar energy applications. J. Mater. Sci. Mater. Electron. 23, 1538–1542 (2012)CrossRefGoogle Scholar
  42. 42.
    E. Koścień, J. Sanetra, E. Gondek, B. Jarosz, I.V. Kityk, J. Ebothe, A.V. Kityk, Optical poling of several halogen derivatives of pyrazoloquinoline. Opt. Commun. 242, 401–409 (2004)CrossRefGoogle Scholar
  43. 43.
    I.V. Kityk, M. Makowska-Janusik, E. Gondek, L. Krzeminska, A. Danel, K.J. Plucinski, S. Benet, S. Sahraoul, Optical poling of oligoether acrylate photopolymers doped by stilbene–benzoate derivative chromophores. J. Phys. Condens. Matter 16, 231–239 (2004)CrossRefGoogle Scholar
  44. 44.
    E. Koścień, J. Sanetra, E. Gondek, B. Jarosz, Optical poling effect and optical absorption of cyan, ethylcarboxyl and tert-buthyl derivatives of 1H-pyrazolo[3,4-b]quinoline: experiment and quantum–chemical simulations. Spectrochim. Acta A 61, 1933–1938 (2005)CrossRefGoogle Scholar
  45. 45.
    I.V. Kityk, B. Sahraoui, G. Rivoire, J. Kasperczyk, M. Czerwiński, M. Salle, Electronic charge density distributions in tetrathiafulvalene derivatives. Eur. Polym. J. 34, 455–462 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • A. Wojciechowski
    • 1
  • M. Manuela M. Raposo
    • 2
  • M. Cidália R. Castro
    • 2
  • W. Kuznik
    • 1
  • I. Fuks-Janczarek
    • 3
  • M. Pokladko-Kowar
    • 4
  • F. Bureš
    • 5
  1. 1.Faculty of Electrical EngineeringCzestochowa University of TechnologyCzestochowaPoland
  2. 2.Center of ChemistryUniversity of MinhoBragaPortugal
  3. 3.Institute of PhysicsJ.Dlugosh UniversityCzestochowaPoland
  4. 4.Institute of PhysicsCracow University of TechnologyKrakówPoland
  5. 5.Institute of Organic Chemistry and Technology, Faculty of Chemical TechnologyUniversity of PardubicePardubiceCzech Republic

Personalised recommendations