Facile synthesis of rice shaped CuO nanostructures for battery application

  • D. Magimai Antoni Raj
  • A. Dhayal Raj
  • A. Albert Irudayaraj
Article

Abstract

The oxides of transition metals are an important class of semiconductors, which have applications in electronics, magnetic storage media, solar applications and catalysis. Among them, CuO has attracted much attention due to its widespread applications. In this paper, a facile synthesis of rice shaped CuO nanostructures have been prepared by reflux method for battery application using Copper nitrate and ammonia as precursors. Samples were prepared at three different reaction timings namely 6, 12 and 24 h. The as-prepared samples were calcinated at 400 °C to ensure the formation of copper oxide. The final products were subjected to X-ray diffraction, scanning electron microscopy, FT-IR and UV–Vis spectroscopy in order to study the effect of reaction time on the properties of the prepared copper oxide nanostructures. It is found that at controlled reaction time rice shaped CuO nanostructures are obtained. Cyclic voltammogram was recorded to understand the electrocatalytic behaviors of the rice shaped CuO sample prepared under optimized condition.

References

  1. 1.
    B. Kang, G. Ceder, Nature 458, 190 (2009)CrossRefGoogle Scholar
  2. 2.
    N. Liu, L.B. Hu, T.M. Matthew, J. Ariel, Y. Cui, ACS Nano 5, 6487 (2011)CrossRefGoogle Scholar
  3. 3.
    A.R. Armstrong, L. Christopher, P.M. Panchmatia, M.S. Islam, P.G. Bruce, Nat. Mater. 10, 223 (2011)CrossRefGoogle Scholar
  4. 4.
    A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, Nat. Mater. 9, 461 (2010)CrossRefGoogle Scholar
  5. 5.
    F.Y. Cheng, J. Liang, Z.L. Tao, J. Chen, Adv. Mater. 23, 1695 (2011)CrossRefGoogle Scholar
  6. 6.
    T.T. Truong, Y. Qin, Y. Ren, Z.H. Chen, M.K. Chan, J.P. Greeley, K. Amine, Y.G. Sun, Adv. Mater. 23, 4947 (2011)CrossRefGoogle Scholar
  7. 7.
    N.A. Kaskhedikar, J. Maier, Adv. Mater. 21, 2664 (2009)CrossRefGoogle Scholar
  8. 8.
    J.T. Han, Y.H. Huang, J.B. Goodenough, Chem. Mater. 23, 2027 (2011)CrossRefGoogle Scholar
  9. 9.
    A.S. Arico, P.G. Bruce, B. Scrosati, J.M. Tarascon, W.V. Schalkwijk, Nat. Mater. 4, 366 (2005)CrossRefGoogle Scholar
  10. 10.
    J. Jamnik, J. Maier, Phys. Chem. Chem. Phys. 5, 5215 (2003)CrossRefGoogle Scholar
  11. 11.
    P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nature 407, 496 (2000)CrossRefGoogle Scholar
  12. 12.
    J.Q. Xu, Y.Q. Pan, Y.A. Shun, Z.Z. Tian, Sens. Actuators B 66, 277 (2000)CrossRefGoogle Scholar
  13. 13.
    Delaunay J.J., Kakoiyama N., Yamada I., Mater. Chem. Phys. 141 (2007)Google Scholar
  14. 14.
    J.Q. Xu, Y.P. Chen, D.Y. Chen, J.N. Shen, Sens. Actuators B 113, 526 (2006)CrossRefGoogle Scholar
  15. 15.
    Y.Z. Lv, L. Guo, H.B. Xu, X.F. Chu, Phys. E 36, 102 (2007)CrossRefGoogle Scholar
  16. 16.
    X.F. Chu, D.L. Jiang, A.B. Djurisic, Y.H. Leung, Chem. Phys. Lett. 401, 426 (2005)CrossRefGoogle Scholar
  17. 17.
    H. Xu, X. Liu, D. Cui, M. Li, M. Jiang, Sens Actuators B 114, 301 (2006)CrossRefGoogle Scholar
  18. 18.
    M.Q. Yang, J.H. He, J. Colloid Interface Sci. 368, 41 (2012)CrossRefGoogle Scholar
  19. 19.
    L.B. Chen, N. Lu, C.M. Xu, H.C. Yu, T.H. Wang, Electrochim. Acta 54, 4198 (2009)CrossRefGoogle Scholar
  20. 20.
    X.C. Jiang, T. Herricks, Y.N. Xia, Nano Lett. 2, 1333 (2002)CrossRefGoogle Scholar
  21. 21.
    Y. Tian, F. Zhang, A.W. Zhu, Y.P. Luo, J.H. Yang, Y. Qin, J. Phys. Chem. C 11, 19214 (2010)Google Scholar
  22. 22.
    G.F. Zou, H. Li, D.W. Zhang, K. Xiong, C. Dong, Y.T. Qian, J. Phys. Chem. B 110, 1632 (2006)CrossRefGoogle Scholar
  23. 23.
    G.X. Wang, X.L. Gou, J.S. Yang, J. Park, D. Wexler, J. Mater. Chem. 18, 965 (2008)CrossRefGoogle Scholar
  24. 24.
    H.W. Hou, Y. Xie, Q. Li, Cryst. Growth Des. 5, 201 (2005)CrossRefGoogle Scholar
  25. 25.
    X.Q. Wang, G.C. Xi, S.L. Xiong, Y.K. Liu, B.J. Xi, W.C. Yu, T.T. Qian, Cryst. Growth Des. 7, 930 (2007)CrossRefGoogle Scholar
  26. 26.
    M. Cao, C. Hu, Y. Wang, Y. Guo, C. Guo, E. Wang, Chem. Commun. 15, 1884 (2003)CrossRefGoogle Scholar
  27. 27.
    I. Singh, R.K. Bedi, ACS Appl. Mater. Interfaces 2, 1361 (2010)CrossRefGoogle Scholar
  28. 28.
    L.J. Zhi, Y.S. Hu, B.E. Hamaoui, X. Wang, I. Lieberwirth, U. Kolb, J. Maier, K. Mullen, Adv. Mater. 20, 1727 (2008)CrossRefGoogle Scholar
  29. 29.
    S.A. Needham, G.X. Wang, K. Konstantinov, Y. Tournayre, Z. Lao, H.K. Liu, Electrochem. Solid State Lett. 9, A315 (2006)CrossRefGoogle Scholar
  30. 30.
    Y.H. Huang, J.B. Goodenough, Chem. Mater. 20, 7237 (2008)CrossRefGoogle Scholar
  31. 31.
    Ethiraj A.S., Kang D.J., Nanoscale Res. Lett. 7 (2012)Google Scholar
  32. 32.
    C. Li, Y. Yin, H. Hou, N. Fan, F. Yuan, Y. Shi, Q. Meng, Solid State Commun. 150, 585 (2010)CrossRefGoogle Scholar
  33. 33.
    H. Wang, J.Z. Xu, J.J. Zhu, H.Y. Chen, J. Cryst. Growth 244, 88 (2002)CrossRefGoogle Scholar
  34. 34.
    H. Kidowaki, T. Oku, T. Akiyama, A. Suzuki, B. Jeyadevan, J. Cuya, J. Mater. Sci. Res. 1, 138 (2012)Google Scholar
  35. 35.
    M.S. Hassan, T. Amna, O-Bong Yang, M.H. El-Newehy, S.S. Al-Deyab, M.-S. Khil, Colloids and Surf. B. Biointerfaces 97, 201 (2012)CrossRefGoogle Scholar
  36. 36.
    X. Wang, C. Hu, H. Liu, G. Du, X. He, Y. Xi, Sens. Actuators B 144, 220 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • D. Magimai Antoni Raj
    • 1
  • A. Dhayal Raj
    • 1
  • A. Albert Irudayaraj
    • 1
  1. 1.Department of PhysicsSacred Heart CollegeTirupattur, Vellore DistrictIndia

Personalised recommendations