Ferromagnetic and weak superparamagnetic like behavior of Ni-doped ZnS nanocrystals synthesized by reflux method

Article

Abstract

In this report we have studied the magnetism induced in the undoped and Ni-doped ZnS nanocrystals synthesized via low temperature reflux method. The average diameter of the undoped and Ni-doped nanoparticles is ~3 nm as revealed from transmission electron microscopy and X-ray diffraction (XRD) studies. From XRD studies, the structure of Ni-doped nanocrystals was observed as cubic zinc blende with lattice parameter, a = 0.539 nm. The band gap of the undoped and Ni-doped ZnS nanocrystals, analyzed with UV–visible spectroscopy, was found to be blue shifted as compared to the bulk counterpart. Quenching in photoluminescence spectra was observed at higher Ni concentrations as compared to undoped counterpart. The induced magnetization as analyzed from vibrating samples magnetometer indicated a weak superparamagnetic like behavior in 1 % Ni-doped ZnS nanocrystals, whereas; at 5 and 10 % Ni-doping concentrations, ferromagnetic behavior is indicated.

References

  1. 1.
    S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Spintronics: a spin-based electronics vision for the future. Science 294, 1488 (2001)CrossRefGoogle Scholar
  2. 2.
    J.K. Furdyna, Dilute magnetic semiconductors. J. Appl. Phys. 64, R29 (1988)CrossRefGoogle Scholar
  3. 3.
    M.L. Steigerwald, L.E. Brus, Semiconductor crystallites: a class of large molecules. Acc. Chem. Res. 23, 183–186 (1990)CrossRefGoogle Scholar
  4. 4.
    D. Kim, K.D. Min, J. Lee, J.H. Park, J.H. Chun, Influences of surface capping on particle size and optical characteristics of ZnS:Cu nanocrystals. Mater. Sci. Eng. B 131, 13 (2006)CrossRefGoogle Scholar
  5. 5.
    Y. Wang, N. Herron, Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem. 95, 525 (1991)CrossRefGoogle Scholar
  6. 6.
    V.L. Colvin, M.C. Schlamp, A.P. Alivisatos, Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354 (1994)CrossRefGoogle Scholar
  7. 7.
    R.N. Bharagava, Doped nanocrystalline materials—physics and applications. J. Lumin. 70, 85–94 (1996)CrossRefGoogle Scholar
  8. 8.
    S. Kumar, S. Kumar, N.K. Verma, S.K. Chakravarti, Room temperature ferromagnetism in solvothermally synthesized pure CdSe and CdSe:Ni nanorods. J. Mater. Sci. Mater. Electron. 22, 1456–1459 (2011)CrossRefGoogle Scholar
  9. 9.
    S. Kumar, S. Kumar, S. Jain, N.K. Verma, Magnetic and structural characterization of transition metal co-doped CdS nanoparticles. Appl. Nanosci. 2, 127–131 (2012)CrossRefGoogle Scholar
  10. 10.
    S. Delikanli, S. He, Y. Qin, P. Zhang, H. Zeng, H. Zhang, M. Swihart, Room temperature ferromagnetism in Mn-doped CdS nanorods. Appl. Phys. Lett. 93, 132501 (2008)CrossRefGoogle Scholar
  11. 11.
    R. Bhargava, D. Gallagher, T. Welker, Doped nanocrystals of semiconductors—a new class of luminescent materials. J. Lumin. 60, 275–280 (1994)CrossRefGoogle Scholar
  12. 12.
    S. Bhattacharya, D. Chakravorty, Electrical and magnetic properties of cold compacted iron-doped zinc sulfide nanoparticles synthesized by wet chemical method. Chem. Phys. Lett. 444, 319–323 (2007)CrossRefGoogle Scholar
  13. 13.
    Z.H. Wang, D.Y. Geng, D. Li, Z.D. Zhang, Cluster spin-glasslike behavior in nanoparticles of diluted magnetic semiconductors ZnS:Mn. J. Mater. Res. 22, 2376–2383 (2007)CrossRefGoogle Scholar
  14. 14.
    I. Sarkar, M. Sanyal, S. Kar, S. Biswas, S. Banerjee, S. Chaudhuri, S. Takeyama, H. Mino, F. Komori, Ferromagnetism in zinc sulfide nanocrystals: dependence on manganese concentration. Phys. Rev. B 75, 224409 (2007)CrossRefGoogle Scholar
  15. 15.
    S. Sambasivam, D.P. Joseph, J.G. Lin, C. Venkateswaran, Synthesis and characterization of thiophenol passivated Fe-doped ZnS nanoparticles. Mater. Sci. Eng. B 150, 125–129 (2008)CrossRefGoogle Scholar
  16. 16.
    S. Sambasivam, D.P. Joseph, J.G. Lin, C. Venkateswaran, Doping induced magnetism in Co-doped ZnS nanoparticles. J. Solid State Chem. 182, 2598–2601 (2009)CrossRefGoogle Scholar
  17. 17.
    N. Eryong, L. Donglai, Z. Yunsen, B. Xue, Y. Liang, J. Yong, J. Zhifeng, S. Xiaosong, Photoluminescence and magnetic properties of Fe-doped ZnS nano-particles synthesized by chemical co-precipitation. Appl. Surf. Sci. 257, 8762–8766 (2011)CrossRefGoogle Scholar
  18. 18.
    D.A. Reddy, G. Murali, R. Vijayalakshmi, B. Reddy, Room-temperature ferromagnetism in EDTA capped Cr-doped ZnS nanoparticles. Appl. Phys. A: Mater. Sci. Process. 105, 119–124 (2011)CrossRefGoogle Scholar
  19. 19.
    S. Kumar, C.L. Chen, C.L. Dong, Y.K. Ho, J.F. Lee, T.S. Chan, R. Thangavel, T.K. Chen, B.H. Mok, S.M. Rao, M.K. Wu, Room temperature ferromagnetism in Ni-doped ZnS nanoparticles. J. Alloy. Compd. 554, 357–362 (2013)CrossRefGoogle Scholar
  20. 20.
    M. Wei, J. Cao, H. Fu, J. Yang, Y. Yan, L. Yang, D. Wang, D. Han, L. Fan, B. Wang, The structure and room temperature ferromagnetism property of the ZnS:Cu2+ nanoparticles. Mater. Sci. Semicond. Process. 16, 928–932 (2013)CrossRefGoogle Scholar
  21. 21.
    Z. Jindal, N.K. Verma, Enhanced luminescence of UV irradiated Zn1−xNixS nanoparticles. Mater. Chem. Phys. 124, 270–273 (2010)CrossRefGoogle Scholar
  22. 22.
    Z. Jindal, N.K. Verma, Photoluminescent properties of ZnS:Mn nanoparticles with in-built surfactant. J. Mater. Sci. 43, 6539–6545 (2008)CrossRefGoogle Scholar
  23. 23.
    G.S. Lotey, Z. Jindal, V. Singhi, N.K. Verma, Structural and photoluminescence properties of Eu-doped ZnS nanoparticles. Mater. Sci. Semicond. Process. 16, 2044–2050 (2013)CrossRefGoogle Scholar
  24. 24.
    Y. Li, C. Cao, Z. Chen, Magnetic and optical properties of Fe-doped ZnS nanoparticles synthesized by microemulsion method. Chem. Phys. Lett. 517, 55–58 (2011)CrossRefGoogle Scholar
  25. 25.
    S. Sambasivam, D.P. Joseph, J.G. Lin, C. Venkateswaran, Doping induced magnetism in Co–ZnS nanoparticles. J. Solid State Chem. 182, 2598–2601 (2009)CrossRefGoogle Scholar
  26. 26.
    N. Saravanan, G.B. Teh, S.Y.P. Yap, K.M. Cheong, Simple synthesis of ZnS nanoparticles in alkaline medium. J. Mater. Sci. Mater. Electron. 19, 1206–1208 (2008)CrossRefGoogle Scholar
  27. 27.
    A.L. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. Lett. 56, 978–982 (1939)Google Scholar
  28. 28.
    N. Dixit, N. Anasane, M. Chavda, D. Bodas, H.P. Soni, Inducing multiple functionalities in ZnS nanoparticles by doping Ni+2 ions. Mater. Res. Bull. 48, 2259–2267 (2013)CrossRefGoogle Scholar
  29. 29.
    D.P. Norton, M.E. Overberg, S.J. Pearton, K. Pruessner, Ferromagnetism in cobalt-implanted ZnO. Appl. Phys. Lett. 83, 5488 (2003)CrossRefGoogle Scholar
  30. 30.
    J.H. Park, M.G. Kim, H.M. Jang, S. Ryu, Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films. Appl. Phys. Lett. 84, 1338 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Nano Research Lab, School of Physics and Material ScienceThapar UniversityPatialaIndia
  2. 2.Department of PhysicsIndus International UniversityUnaIndia

Personalised recommendations