Effect of Ni-doping on optical and magnetic properties of solvothermally synthesized ZnS wurtzite nanorods

Article

Abstract

In this study we have reported the effect of Ni-doping on optical and magnetic properties of ZnS nanorods. The diameter and length of low temperature solvothermally synthesized, high quality nanorods are 10 and 50–300 nm respectively as revealed from transmission electron microscopy. From X-ray diffraction, the structure of Ni-doped nanorods was observed as wurtzite with lattice parameters, a = 3.83 and c = 6.26. The band gap of the undoped and doped samples was found to be blue shifted as compared to the bulk counterpart when analyzed with UV–visible spectroscopy. Quenching in photoluminescence spectra was observed in case of Ni-doped nanorods as compared to undoped counterpart. The magnetization as analyzed from vibrating sample magnetometer was found to increase with 1 and 5 % Ni-doping concentration, and decrease with further increase in Ni-doping concentration, i.e., with 10 % Ni-doping.

References

  1. 1.
    S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Spintronics: a spin-based electronics vision for the future. Science 294, 1488 (2001)CrossRefGoogle Scholar
  2. 2.
    J.K. Furdyna, Dilute magnetic semiconductors. J. Appl. Phys. 64, R29 (1988)CrossRefGoogle Scholar
  3. 3.
    M.L. Steigerwald, L.E. Brus, Semiconductor crystallites: a class of large molecules. Acc. Chem. Res. 23, 183–186 (1990)CrossRefGoogle Scholar
  4. 4.
    D. Kim, K.D. Min, J. Lee, J.H. Park, J.H. Chun, Influences of surface capping on particle size and optical characteristics of ZnS:Cu nanocrystals. Mater. Sci. Eng. B 131, 13 (2006)CrossRefGoogle Scholar
  5. 5.
    Y. Wang, N. Herron, Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem. 95, 525 (1991)CrossRefGoogle Scholar
  6. 6.
    V.L. Colvin, M.C. Schlamp, A.P. Alivisatos, Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354 (1994)CrossRefGoogle Scholar
  7. 7.
    R.N. Bharagava, Doped nanocrystalline materials—physics and applications. J. Lumin. 70, 85–94 (1996)CrossRefGoogle Scholar
  8. 8.
    S. Kumar, S. Kumar, N.K. Verma, S.K. Chakravarti, Room temperature ferromagnetism in solvothermally synthesized pure CdSe and CdSe:Ni nanorods. J. Mater. Sci. Mater. Electron. 22, 1456–1459 (2011)CrossRefGoogle Scholar
  9. 9.
    S. Kumar, S. Kumar, S. Jain, N.K. Verma, Magnetic and structural characterization of transition metal co-doped CdS nanoparticles. Appl. Nanosci. 2, 127–131 (2012)CrossRefGoogle Scholar
  10. 10.
    S. Delikanli, S. He, Y. Qin, P. Zhang, H. Zeng, H. Zhang, M. Swihart, Room temperature ferromagnetism in Mn-doped CdS nanorods. Appl. Phys. Lett. 93, 132501 (2008)CrossRefGoogle Scholar
  11. 11.
    R. Bhargava, D. Gallagher, T. Welker, Doped nanocrystals of semiconductors—a new class of luminescent materials. J. Lumin. 60, 275–280 (1994)CrossRefGoogle Scholar
  12. 12.
    P.B. He, W.M. Liu, Nonlinear magnetization dynamics in a ferromagnetic nanowire with spin current. Phys. Rev. B 72, 064410 (2005)CrossRefGoogle Scholar
  13. 13.
    P.B. He, X.C. Xie, W.M. Liu, Domain-wall resonance induced by spin-polarized current in metal thin films with stripe structures. Phys. Rev. B 72, 172411 (2005)CrossRefGoogle Scholar
  14. 14.
    Z.D. Li, Q.Y. Li, L. Li, W.M. Liu, Soliton solution for the spin current in a ferromagnetic nanowires. Phys. Rev. E 76, 026605 (2007)CrossRefGoogle Scholar
  15. 15.
    Z. Jindal, N.K. Verma, Enhanced luminescence of UV irradiated Zn1−xNixS nanoparticles. Mater. Chem. Phys. 124, 270–273 (2010)CrossRefGoogle Scholar
  16. 16.
    Z. Jindal, N.K. Verma, Photoluminescent properties of ZnS:Mn nanoparticles with in-built surfactant. J. Mater. Sci. 43, 6539–6545 (2008)CrossRefGoogle Scholar
  17. 17.
    G.S. Lotey, Z. Jindal, V. Singhi, N.K. Verma, Structural and photoluminescence properties of Eu-doped ZnS nanoparticles. Mater. Sci. Semicond. Process. 16, 2044–2050 (2013)CrossRefGoogle Scholar
  18. 18.
    Y. Li, C. Cao, Z. Chen, Magnetic and optical properties of Fe-doped ZnS nanoparticles synthesized by microemulsion method. Chem. Phys. Lett. 517, 55–58 (2011)CrossRefGoogle Scholar
  19. 19.
    S. Sambasivam, D.P. Joseph, J.G. Lin, C. Venkateswaran, Doping induced magnetism in Co–ZnS nanoparticles. J. Solid State Chem. 182, 2598–2601 (2009)CrossRefGoogle Scholar
  20. 20.
    S. Kumar, C.L. Chen, C.L. Dong, Y.K. Ho, J.F. Lee, T.S. Chan, R. Thangavel, T.K. Chen, B.H. Mok, S.M. Rao, M.K. Wu, Room temperature ferromagnetism in Ni-doped ZnS nanoparticles. J. Alloy. Compd. 554, 357–362 (2013)CrossRefGoogle Scholar
  21. 21.
    S. Biswas, S. Kar, Fabrication of ZnS nanoparticles and nanorods with cubic and hexagonal crystal structures: a simple solvothermal approach. Nanotechnology 19, 045710 (2008)CrossRefGoogle Scholar
  22. 22.
    Z. Yang, Q.H. Liu, H.C. Yu, B. Zou, Y.G. Wang, T.H. Wang, Substrate-free growth, characterization and growth mechanism of ZnO nanorods close-packed arrays. Nanotechnology 19, 035704 (2008)CrossRefGoogle Scholar
  23. 23.
    S. Sambasivam, D. Paul Joseph, D. Raja Reddy, B.K. Reddy, C.K. Jayasankar, Mater. Sci. Eng. B 150, 125–129 (2008)CrossRefGoogle Scholar
  24. 24.
    J. Cao, D. Han, B. Wang, L. Fan, H. Fu, M. Wei, B. Feng, X. Liu, J. Yang, Low temperature synthesis, photoluminescence, magnetic properties of the transition metal doped wurtzite ZnS nanowires. J. Solid State Chem. 200, 317–322 (2013)CrossRefGoogle Scholar
  25. 25.
    W. Sang, Y. Qian, J. Min, D. Li, L. Wang, W. Shi, L. Yinfeng, Microstructural and optical properties of ZnS:Cu nanocrystals prepared by complex transformation method. Solid State Commun. 121, 475–478 (2002)CrossRefGoogle Scholar
  26. 26.
    P.H. Borse, N. Deshmukh, Luminescence quenching in ZnS nanoparticles due to Fe and Ni doping. J. Mater. Sci. 34, 6087–6099 (1999)CrossRefGoogle Scholar
  27. 27.
    Q.J. Feng, D.Z. Shen, J.Y. Zhang, Y.M. Lu, Y.C. Liu, X.W. Fan, Influence of Fe content on the structural and optical properties of ZnFeS thin films. Mater. Chem. Phys. 96, 158–162 (2006)CrossRefGoogle Scholar
  28. 28.
    G. Zhu, S. Zhang, Z. Xu, J. Ma, X. Shen, Ultrathin ZnS single crystal nanowires: controlled synthesis and room-temperature ferromagnetism properties. J. Am. Chem. Soc. 133, 15605–15612 (2011)CrossRefGoogle Scholar
  29. 29.
    C.J. Chen, W. Gao, Z.F. Qin, W. Hu, M. Qu, W. Giriat, Magnetization and magnetic susceptibility of the diluted magnetic semiconductors Zn1−xCoxS and Zn1−xCoxSe. J. Appl. Phys. 70, 6277 (1991)CrossRefGoogle Scholar
  30. 30.
    H. Chen, D. Shi, J. Qi, Comparative studies on the magnetic properties of ZnS nanowires doped with transition metal atoms. J. Appl. Phys. 109, 084338 (2011)CrossRefGoogle Scholar
  31. 31.
    T.M. Giebultowicz, P. Klosowski, J.J. Rhyne, T.J. Udovic, J.K. Furdyna, W. Giriat, Magnetic exchange interactions in Co-based II–VI diluted magnetic semiconductors: Zn1−xCoxS. Phys. Rev. B 41, 504 (1990)CrossRefGoogle Scholar
  32. 32.
    S.P. Patel, J.C. Pivin, A.K. Chawla, R. Chandra, D. Kanjilal, L. Kumar, Room temperature ferromagnetism in Zn1-xCxS thin films with wurtzite structure. J. Magn. Magn. Mater. 323, 2734–2740 (2011)CrossRefGoogle Scholar
  33. 33.
    C. Bi, L. Pan, M. Xu, J. Yin, L. Qin, J. Liu, H. Zhu, J.Q. Xiao, Synthesis and characterization of Co-doped wurtzite ZnS nanocrystals. Mater. Phys. Chem. 116, 363–367 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Nano Research Lab, School of Physics and Material ScienceThapar UniversityPatialaIndia
  2. 2.Department of PhysicsIndus International UniversityUnaIndia

Personalised recommendations