Behavior of dual ion beam sputtered MgZnO thin films for different oxygen partial pressure

  • Saurabh Kumar Pandey
  • Sushil Kumar Pandey
  • Vishnu Awasthi
  • Ashish Kumar
  • M. Gupta
  • V. Sathe
  • Shaibal Mukherjee
Article

Abstract

Mg-doped ZnO (MgZnO) films were grown on p-Si (001) substrates by dual ion beam sputtering deposition system at a constant growth temperature of 600 °C for different oxygen partial pressure. The impact of oxygen partial pressure on the structural, electrical, elemental and morphological properties was thoroughly investigated. X-ray diffraction (XRD) spectra revealed that the deposited MgZnO films were polycrystalline in nature with preferred (002) crystal orientation. The peak of MgZnO (101) plane was reduced significantly as oxygen partial pressure was increased and disappeared completely at 80 and 100 % O2. The maximum electron concentration was evaluated to be 5.79 × 1018 cm−3 with resistivity of 0.116 Ω cm and electron mobility of 9.306 cm2/V s at room temperature, for MgZnO film grown with 20 % O2. Raman spectra shows a broad peak at 434 cm−1 corresponded to E2high phonons mode of MgZnO wurtzite structure. The peak at 560 cm−1 corresponded to the E1 (LO) mode and was associated with oxygen deficiency in MgZnO films. Raman intensity at 560 cm−1 reduced, on increasing oxygen partial pressure. A correlation between structural, electrical, elemental and morphological properties with oxygen partial pressure was also established.

References

  1. 1.
    S. Muthukumar, J. Zhong, Y. Chen, Y. Lu, T. Siegrist, Appl. Phys. Lett. 82, 742 (2003)CrossRefGoogle Scholar
  2. 2.
    D.C. Reynolds, D.C. Look, B. Jogai, Solid State Commun. 99, 873 (1996)CrossRefGoogle Scholar
  3. 3.
    S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Prog. Mater. Sci. 50, 293 (2005)CrossRefGoogle Scholar
  4. 4.
    D.C. Look, G.M. Renlund, R.H. Burgeber II, J.R. Sizelove, Appl. Phys. Lett. 85, 5269 (2004)CrossRefGoogle Scholar
  5. 5.
    T. Makino, Y. Segawa, A. Tsukazaki, A. Ohtomo, M. Kawasaki, Appl. Phys. Lett. 87, 022101 (2005)CrossRefGoogle Scholar
  6. 6.
    A. Ohotomo, Y. Sakurai, T. Yasuda, Appl. Phys. Lett. 72, 2466 (1998)CrossRefGoogle Scholar
  7. 7.
    U. Ozgur, Y.I. Alivov, C. Li, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, J. Appl. Phys. 98, 041301 (2005)CrossRefGoogle Scholar
  8. 8.
    S. Sadofev, S. Blumstengel, J. Cui, J. Puls, S. Rogaschewski, P. Schafer, Y.G. Sadofyev, F. Henneberger, Appl. Phys. Lett. 87, 091903 (2005)CrossRefGoogle Scholar
  9. 9.
    D.X. Zhao, Y.C. Liu, D.Z. Shen et al., J. Appl. Phys. 90, 5561 (2001)CrossRefGoogle Scholar
  10. 10.
    Z. Vahaei, T. Minegishi, T. Yao, J. Cryst. Growth 306, 269 (2007)CrossRefGoogle Scholar
  11. 11.
    A.K. Sharma, J. Narayan, J.F. Muth, C.W. Teng, C. Jin, A. Kvit, R.M. Kolbas, O.W. Holland, Appl. Phys. Lett. 75, 3327 (1999)CrossRefGoogle Scholar
  12. 12.
    S. Choopan, R.D. Vispute, W. Yang, R.P. Sharma, T. Venkatesan, Appl. Phys. Lett. 80, 1529 (2002)CrossRefGoogle Scholar
  13. 13.
    A. Ohtomo, A. Tsukazaki, Semicond. Sci. Technol. 20, S1 (2005)CrossRefGoogle Scholar
  14. 14.
    I. Hayashi, M.B. Panish, P.W. Foy, S. Sumski, Appl. Phys. Lett. 17, 109 (1970)CrossRefGoogle Scholar
  15. 15.
    T. Minemoto, T. Negami, S. Nishiwaki, H. Takakura, Y. Hamakawa, Thin Solid Films 372, 173 (2000)CrossRefGoogle Scholar
  16. 16.
    C.L. Jia, K.M. Wang, X.L. Wang, X.J. Zhang, Opt. Express 13, 5093 (2005)CrossRefGoogle Scholar
  17. 17.
    S. Kumar, V. Gupta, K. Sreenivas, J. Phys. Condens. Matter 18, 3343 (2006)CrossRefGoogle Scholar
  18. 18.
    S.K. Pandey, S.K. Pandey, C. Mukherjee, P. Mishra, M. Gupta, S.R. Barman, S.W. D’Souza, S. Mukherjee, J. Mater. Sci. Mater. Electron. 24, 2541 (2013)CrossRefGoogle Scholar
  19. 19.
    S.K. Pandey, S.K. Pandey, U.P. Deshpande, V. Awasthi, A. Kumar, M. Gupta, S. Mukherjee, Semicond. Sci. Technol. 28, 085014 (2013)CrossRefGoogle Scholar
  20. 20.
    S.K. Pandey, S.K. Pandey, V. Awasthi, M. Gupta, U.P. Deshpande, S. Mukherjee, Appl. Phys. Lett. 103, 072109 (2013)CrossRefGoogle Scholar
  21. 21.
    S.K. Pandey, S.K. Pandey, S. Verma, M. Gupta, V. Sathe, S. Mukherjee, J. Mater. Sci. Mater. Electron. 24, 4919 (2013)Google Scholar
  22. 22.
    V. Kumar, R.G. Singh, L.P. Purohit, R.M. Mehra, J. Nano Electron. Phys. 3, 1 (2011)Google Scholar
  23. 23.
    E.R. Segnit, A.E. Holland, J. Am. Ceram. Soc. 48, 412 (1965)CrossRefGoogle Scholar
  24. 24.
    R. Kumar, N. Khare, V. Kumar, G.L. Bhalla, Appl. Surf. Sci. 254, 6289 (2008)CrossRefGoogle Scholar
  25. 25.
    A.B. Asharfi, Y. Segawa, J. Vac. Sci. Technol. B 23, 5 (2005)Google Scholar
  26. 26.
    B.D. Cullity, Elements of X-ray Diffraction, 2nd edn. (Addison-Wesley, Reading, MA, 1978), p. 102Google Scholar
  27. 27.
    C. Bundesmann, A. Rahm, M. Lorenz, M. Grundmann, J. Appl. Phys. 99, 113504 (2006)CrossRefGoogle Scholar
  28. 28.
    N.J. Lanno, L. McConville, N. Shaikh, S. Pittal, P.G. Snyber, Thin Solid Films 220, 92 (1992)CrossRefGoogle Scholar
  29. 29.
    X.L. Xu, S.P. Lau, J.S. Chen, G.Y. Chen, B.K. Tay, J. Cryst. Growth 223, 201 (2001)CrossRefGoogle Scholar
  30. 30.
    X.L. Xu, S.P. Lau, B.K. Tay, Thin Solid Films 398, 244 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Saurabh Kumar Pandey
    • 1
  • Sushil Kumar Pandey
    • 1
  • Vishnu Awasthi
    • 1
  • Ashish Kumar
    • 1
  • M. Gupta
    • 2
  • V. Sathe
    • 2
  • Shaibal Mukherjee
    • 1
  1. 1.Hybrid Nanodevice Research Group (HNRG), Discipline of Electrical EngineeringIndian Institute of TechnologyIndoreIndia
  2. 2.University Grants Commission Department of Atomic Energy (UGC DAE) Consortium for Scientific ResearchIndoreIndia

Personalised recommendations