Efficiency enhancement of polymer solar cells with Ag nanoparticles incorporated into PEDOT:PSS layer



In this study, large-sized silver nanoparticles (Ag NPs) (average size: 80 nm) have been introduced into the anodic buffer poly-(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) layer (thickness: about 55 nm) of poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester bulk heterojunction polymer solar cells. The results showed that the short-circuit current density can increase from 8.73 to 11.36 mA/cm2, and power conversion efficiency increases from 2.28 to 2.65 % when 0.1 wt% Ag NPs was incorporated in PEDOT:PSS layer, corresponding to an efficiency improvement of 16.2 %. Absorption spectrums of the active layers indicate that large-sized Ag NPs have no clear contribution to optical absorption improvement. By measuring the conductivity of PEDOT:PSS films without and with Ag NPs and analyzing device structure of this polymer solar cell, it was founded that the improvements in power conversion efficiency was originated from higher conductivity of PEDOT:PSS layer incorporated with Ag NPs and the shorter routes for holes to travel to the anode.


  1. 1.
    F.C. Krebs, Sol. Energy Mater. Sol. C 93, 1636 (2009)CrossRefGoogle Scholar
  2. 2.
    Y. Liang, Z. Xu, J. Xia, S.T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, Adv. Mater. 22, E135 (2010)CrossRefGoogle Scholar
  3. 3.
    S.C. Price, A.C. Stuart, L. Yang, H. Zhou, W. You, J. Am. Chem. Soc. 133, 4625 (2011)CrossRefGoogle Scholar
  4. 4.
    H. Zhou, L. Yang, W. You, Macromolecules 45, 607 (2012)CrossRefGoogle Scholar
  5. 5.
    X. Fan, G.J. Fang, P.L. Qin, F. Cheng, X.Z. Zhao, Appl. Phys. A 105, 1003 (2011)CrossRefGoogle Scholar
  6. 6.
    P.E. Shaw, A. Ruseckas, D.W. SamuelI, Adv. Mater. 20, 3516 (2008)CrossRefGoogle Scholar
  7. 7.
    S.M. Menke, W.A. Luhman, R.J. Holmes, Nat. Mater. 12, 152 (2013)CrossRefGoogle Scholar
  8. 8.
    S.H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J.S. Moon, D. Moses, M. Leclerc, K. Lee, A.J. Heeger, Nat. Photonics 3, 297 (2009)CrossRefGoogle Scholar
  9. 9.
    A.M. Nardes, A.L. Ayzner, S.R. Hammond, A.J. Ferguson, B.J. Schwartz, N. Kopidakis, J. Phys. Chem. C 116, 7293 (2012)CrossRefGoogle Scholar
  10. 10.
    J.Y. Kim, K. Lee, N.E. Coates, D. Moses, T.Q. Nguyen, M. Dante, A.J. Heeger, Science 317, 222 (2007)CrossRefGoogle Scholar
  11. 11.
    J. Yang, J. You, C. Chen, W. Hsu, H. Tan, X.W. Zhang, Z. Hong, Y. Yang, ACS Nano 8, 6210 (2011)CrossRefGoogle Scholar
  12. 12.
    J.E. Allen, C.T. Black, ACS Nano 10, 7986 (2011)CrossRefGoogle Scholar
  13. 13.
    J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.C. Chen, J. Gao, G. Li, Y. Yang, Nat. Commun. 4, 1446 (2013)CrossRefGoogle Scholar
  14. 14.
    L. Müller-Meskamp, Y.H. Kim, T. Roch, S. Hofmann, R. Scholz, S. Eckardt, K. Leo, A.F. Lasagni, Adv. Mater. 24, 906 (2012)CrossRefGoogle Scholar
  15. 15.
    Z. Hu, J. Zhang, Y. Zhao, J. Appl. Phys. 111, 104516 (2012)CrossRefGoogle Scholar
  16. 16.
    A. Roy, S.H. Park, S. Cowan, M.H. Tong, S. Cho, K. Lee, A.J. Heeger, Appl. Phys. Lett. 95, 013302 (2009)CrossRefGoogle Scholar
  17. 17.
    S. Kwon, J.K. Park, G. Kim, J. Kong, G.C. Bazan, K. Lee, Adv. Energy Mater. 2, 1420 (2012)CrossRefGoogle Scholar
  18. 18.
    X.H. Li, W.E.I. Sha, W.C.H. Choy, D.D.S. Fung, F.X. Xie, J. Phys. Chem. C 116, 7200 (2012)CrossRefGoogle Scholar
  19. 19.
    X. Li, W.C.H. Choy, L. Huo, F. Xie, W.E.I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, Y. Yang, Adv. Mater. 24, 3046 (2012)CrossRefGoogle Scholar
  20. 20.
    X. Li, W.C.H. Choy, X. Ren, J. Xin, P. Lin, D.C.W. Leung, Appl. Phys. Lett. 102, 153304 (2013)CrossRefGoogle Scholar
  21. 21.
    N. Kalfagiannis, P.G. Karagiannidis, C. Pitsalidis, N.T. Panagiotopoulos, C. Gravalidis, S. Kassavetis, P. Patsalas, S. Logothetidis, Sol. Energy Mater Sol. C 104, 165 (2012)CrossRefGoogle Scholar
  22. 22.
    R.S. Kim, J. Zhu, J.H. Park, L. Li, Z. Yu, H. Shen, M. Xue, K.L. Wang, G. Park, T.J. Anderson, Q. Pei, Opt. Express 20, 12649 (2012)CrossRefGoogle Scholar
  23. 23.
    X. Li, W.C.H. Choy, H. Lu, W.E.I. Sha, A.H.P. Ho, Adv. Funct. Mater. 23, 2728 (2013)CrossRefGoogle Scholar
  24. 24.
    D.H. Wang, D.Y. Kim, K.W. Choi, J.H. Seo, S.H. Im, J.H. Park, O.O. Park, A.J. Heeger, Angew. Chem. Int. Ed. 50, 5519 (2013)CrossRefGoogle Scholar
  25. 25.
    D.D.S. Fung, L. Qiao, W.C.H. Choy, C. Wang, W.E.I. Sha, F. Xie, S. He, J. Mater. Chem. 21, 16349 (2011)CrossRefGoogle Scholar
  26. 26.
    B. Zeng, Q. Gan, Z.H. Kafafi, F.J. Bartoli, J. Appl. Phys. 113, 063109 (2013)CrossRefGoogle Scholar
  27. 27.
    F.X. Xie, W.C.H. Choy, C.C.D. Wang, W.E.I. Sha, D.D.S. Fung, Appl. Phys. Lett. 99, 153304 (2011)CrossRefGoogle Scholar
  28. 28.
    H.L. Gao, X.W. Zhang, Z.G. Yin, H.R. Tan, S.G. Zhang, J.H. Meng, X. Liu, Appl. Phys. Lett. 101, 133903 (2012)CrossRefGoogle Scholar
  29. 29.
    S.W. Baek, J. Noh, C.H. Lee, B. Kim, M.K. Seo, J.Y. Lee, Sci. Rep. 3, 1726 (2013)Google Scholar
  30. 30.
    Z.S. Pillai, P.V. Kamat, J. Phys. Chem. B 108, 945 (2004)CrossRefGoogle Scholar
  31. 31.
    A. Šileikaitė, I. Prosyčevas, J. Puišo, A. Juraitis, A. Guobienė, Mater. Sci. 12, 287 (2006)Google Scholar
  32. 32.
    C.J. Brabec, A. Cravino, D. Meissner, N.S. Sariciftci, T. Fromherz, M.T. Rispens, L. Sanchez, J.C. Hummelen, Adv. Funct. Mater. 11, 374 (2001)CrossRefGoogle Scholar
  33. 33.
    K.M. Coakley, M.D. McGehee, Chem. Mater. 16, 4533 (2004)CrossRefGoogle Scholar
  34. 34.
    M.H. Hsu, P. Yu, J.H. Huang, C.H. Chang, C.W. Wu, Y.C. Cheng, C.W. Chu, Appl. Phys. Lett. 98, 073308 (2011)CrossRefGoogle Scholar
  35. 35.
    X. Chen, L. Zuo, W. Fu, Q. Yan, C. Fan, H. Chen, Sol. Energy Mater Sol. C 111, 1 (2013)CrossRefGoogle Scholar
  36. 36.
    Y. Chen, C. Hsu, R.Y. Lin, K. Ho, J.T. Lin, ChemSusChem 6, 20 (2013)CrossRefGoogle Scholar
  37. 37.
    B. Qi, J. Wang, Phys. Chem. Chem. Phys. 15, 8972 (2013)CrossRefGoogle Scholar
  38. 38.
    C.S. Kao, F.C. Chen, C.W. Liao, M.H. Huang, C.S. Hsu, Appl. Phys. Lett. 101, 193902 (2012)CrossRefGoogle Scholar
  39. 39.
    A.Y. Mahmoud, J. Zhang, D. Ma, R. Izquierdo, V. Truong, Org. Electron. 13, 3102 (2012)CrossRefGoogle Scholar
  40. 40.
    D. Zhang, W.C.H. Choy, F. Xie, W.E.I. Sha, X. Li, B. Ding, K. Zhang, F. Huang, Y. Cao, Adv. Funct. Mater. 23, 4255 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic TechnologyBeijing Jiaotong UniversityBeijingPeople’s Republic of China
  2. 2.Department of PhysicsBeijing Technology and Business UniversityBeijingPeople’s Republic of China

Personalised recommendations