Advertisement

Improved magneto-electric response in Na0.5Bi0.5TiO3–MnFe2O4 composites

  • K. Praveena
  • K. B. R. Varma
Article

Abstract

Magneto-electric composites comprising Na0.5Bi0.5TiO3 (NBT) and MnFe2O4 (MFO) were fabricated using their fine powders obtained via sol–gel method. X-ray diffraction and scanning electron microscopy results confirmed the single-phase formation of NBT and MFO and the composite nature when these were mixed and sintered at appropriate temperatures. The dielectric constant (εr) and dielectric loss (D) decreased with increase in frequency (40–110 MHz). Room temperature magnetization measurements established these composites to be soft magnetic. Further, the nature of these composites were established to be magneto-electric at 300 K. The highest ME response of 0.19 % was observed in 30NBT–70MFO composite. The ME coefficient (α) was 240 mV/cm Oe for the same composition. The present study demonstrated the effectiveness of NBT/MFO as a lead-free multiferroic composite and provides an alternative for environment-friendly ME device applications.

Keywords

Ferrite BaTiO3 Barium Titanate Ferroelectric Phase Nickel Ferrite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

K. Praveena thanks University Grants Commission (UGC), New Delhi for Dr D.S. Kothari Postdoctoral Fellowship.

References

  1. 1.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)CrossRefGoogle Scholar
  2. 2.
    S.W. Cheong, M. Mostovoy, Nat. Mater. 6, 13 (2007)CrossRefGoogle Scholar
  3. 3.
    R. Ramesh, N.A. Spaldin, Nat. Mater. 6, 21 (2007)CrossRefGoogle Scholar
  4. 4.
    M. Bibes, A. Barthelemy, Nat. Mater. 7, 425 (2008)CrossRefGoogle Scholar
  5. 5.
    M. Fiebig, J. Phys. D Appl. Phys. 38, R123 (2005)CrossRefGoogle Scholar
  6. 6.
    J.F. Scott, Nat. Mater. 6, 256 (2007)CrossRefGoogle Scholar
  7. 7.
    J. Van Suchtelen, Philips Res. Rep. 27, 28 (1972)Google Scholar
  8. 8.
    G.A. Smolenskii, I.E. Chupis, Usp. Fiz. Nauk 137, 415 (1982)CrossRefGoogle Scholar
  9. 9.
    J. Van den Boomgaard, D.R. Terrell, H.F. Born, J.I. Giller, J. Mater. Sci. 9, 1705 (1974)CrossRefGoogle Scholar
  10. 10.
    J. Van den Boomgaard, A.M.J.G. Van Run, J. Van Suchtelen, Ferroelectrics 10, 295 (1976)CrossRefGoogle Scholar
  11. 11.
    J. Van den Boomgaard, R.A.J. Born, J. Mater. Sci. 13, 1538 (1978)CrossRefGoogle Scholar
  12. 12.
    K. Srinivas, G. Prasad, T. Bhimasankaram, S.V. Suryanarayana, C. Prakash, S.N. Chatterjee, Proc. SPIE 3903, 266 (1999)CrossRefGoogle Scholar
  13. 13.
    K. Srinivas, G. Prasad, T. Bhimasankaram, S.V. Suryanarayana, Mod. Phys. Lett. B 14, 663 (2000)CrossRefGoogle Scholar
  14. 14.
    G. Srinivasan, E.T. Rasmussen, J. Gallegos, R. Srinivasan, Y.I. Bhokan, V.M. Latetin, Phys. Rev. B 64, 214408 (2001)CrossRefGoogle Scholar
  15. 15.
    G. Srinivasan, E.T. Rasmussen, B.J. Levin, R. Hayes, Phys. Rev. B 65, 134402 (2002)CrossRefGoogle Scholar
  16. 16.
    J. Ryu, A.V. Carazo, K. Uchino, H.E. Kim, Jpn. J. Appl. Phys. 40, 4948 (2001)CrossRefGoogle Scholar
  17. 17.
    G.A. Smolenskii, V. Isupov, A. Agranovskaya, N. Krainik, Sov. Phys. Solid State 2, 2651 (1961)Google Scholar
  18. 18.
    A. Herabut, A. Safarl, J. Am. Ceram. Soc. 80, 2954 (1997)CrossRefGoogle Scholar
  19. 19.
    T. Takenaka, Ferroelectrics 230, 87 (1999)CrossRefGoogle Scholar
  20. 20.
    J. Suchanicz, M.G. Gavshin, A.Y. Kudzin, C.Z. Kus, J. Mater. Sci. 36, 1981 (2001)CrossRefGoogle Scholar
  21. 21.
    I.P. Pronin, P.P. Syrnikov, V.A. Isupov, V.M. Egorov, N.V. Zaitseva, Ferroelectrics 25, 395 (1980)CrossRefGoogle Scholar
  22. 22.
    C.S. Tu, I.G. Siny, V.H. Schmidt, Phys. Rev. B 49, 11550 (1994)CrossRefGoogle Scholar
  23. 23.
    I.G. Siny, C.S. Tu, V.H. Schmidt, Phys. Rev. B 51, 5659 (1995)CrossRefGoogle Scholar
  24. 24.
    O. Yuqiu, Y. Haibin, Y. Nan, F. Yuzun, Z. Hongyang, Z. Guangtian, Mater. Lett. 60, 3548 (2006)CrossRefGoogle Scholar
  25. 25.
    Q.M. Wei, J. Li, Y. Chen, Y. Han, Mater. Charact. 47, 247 (2001)CrossRefGoogle Scholar
  26. 26.
    F. Chen, Q.F. Zhang, J.H. Li, Y.J. Qi, C.J. Lu, X.B. Chen, X.M. Ren, Y. Zhao, Appl. Phys. Lett. 89, 092910 (2006)CrossRefGoogle Scholar
  27. 27.
    J. Van den Boomgaard, R.A.J. Born, J. Mater. Sci. 13, 1538 (1978)CrossRefGoogle Scholar
  28. 28.
    S. Upadhyay, D. Kumar, O.M. Parkash, Bull. Mater. Sci. 19, 513 (1996)CrossRefGoogle Scholar
  29. 29.
    C.G. Koops, Phys. Rev. B 83, 121 (1951)CrossRefGoogle Scholar
  30. 30.
    J.C. Maxwell, Electricity and Magnetism (Oxford University Press, London, 1954)Google Scholar
  31. 31.
    K.W. Wagner, Ann. Phys. 40, 818 (1993)Google Scholar
  32. 32.
    B.P. Rao, K.H. Rao, K. Trinadha, O.F. Caltunb, Adv. Mater. 6, 951 (2004)Google Scholar
  33. 33.
    V.L. Mathe, K.K. Patankar, M.B. Kothale, S.B. Kulkarni, P.B. Joshi, S.A. Patil, Pramana J. Phys. 58, 1105 (2002)CrossRefGoogle Scholar
  34. 34.
    N. Rezlescu, E. Rezlescu, Phys. State Solid A 23, 575 (1974)CrossRefGoogle Scholar
  35. 35.
    S. Hosseini, S.H. Mohseni, A. Asadnia, H. Kerdari, J. Alloy Compd. 509, 4682 (2011)CrossRefGoogle Scholar
  36. 36.
    S. Narendra Babu, Y. Jen-Hwa Hsu, S. Chen, J.G. Lin, J. Appl. Phys. 109, 0904 (2011)Google Scholar
  37. 37.
    S. Narendra Babu, K. Srinivas, S.V. Suryanarayana, T. Bhimasankaram, J. Phys. D Appl. Phys. 41, 165407 (2008)CrossRefGoogle Scholar
  38. 38.
    T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Nature 426, 55 (2003)CrossRefGoogle Scholar
  39. 39.
    Y.-K. Jun, W.-T. Moon, C.-M. Chang, H.-S. Kim, H.S. Ryu, J.W. Kim, K.H. Kim, S.-H. Hong, Solid State Commun. 135, 133 (2005)CrossRefGoogle Scholar
  40. 40.
    V.R. Palkar, C. Kundaliya Darshan, S.K. Malik, S. Bhattacharya, Phys. Rev. B 69, 212102 (2004)CrossRefGoogle Scholar
  41. 41.
    S.N. Babu, L. Malkinski, J. Appl. Phys. 111, 919 (2012)Google Scholar
  42. 42.
    Y.H. Tang, X.M. Chen, Y.J. Li, X.H. Zheng, Mater. Sci. Eng. B 116, 150 (2005)CrossRefGoogle Scholar
  43. 43.
    W.D. Kingery, Introduction to Ceramics (Wiley, London, 1988), p. 720Google Scholar
  44. 44.
    C.W. Nan, M. Li, J.H. Haung, Phys. Rev. B 63, 144415 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Materials Research CentreIndian Institute of ScienceBangaloreIndia

Personalised recommendations