Advertisement

Study on CaCO3-coated ZnO nanoparticles based dye sensitized solar cell

  • Manveen KaurEmail author
  • N. K. Verma
Article

Abstract

Dye sensitized solar cells (DSSCs) have been fabricated using ZnO and CaCO3-coated ZnO nanoparticles. The effect of CaCO3 coating on the performance of DSSC has been investigated. CaCO3-coated ZnO nanoparticles have been synthesized by hydrothermal method. X-ray diffraction patterns of synthesized nanoparticles reveal that the ZnO and CaCO3-coated ZnO nanoparticles have respectively wurtzite and rhomb-centred structure and both having hexagonal phase. Transmission electron microscopy study reveal that ZnO and CaCO3-coated ZnO nanoparticles possess spherical symmetry and have average particle size respectively 6.2 and 6.7 nm. In case of CaCO3/ZnO nanoparticles, the quenching in photoluminescence emission intensity has been attributed to the decrease in recombination rate of photo-generated electron–hole pairs. UV–Vis absorption spectra, confirms that the electrodes fabricated from the CaCO3-coated ZnO nanoparticles have higher absorbance that shows their higher dye adsorbing power. The use of CaCO3 coating has been found to enhance the efficiency of DSSC by over 100 %.

Keywords

CaCO3 Zinc Acetate Hexachloroplatinic Acid Tetrabutylammonium Iodide Electron Injection Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors are grateful to the University Grants Commission (UGC) for the research funding vide sanction letter no. F. No. 39-533/2010 (SR) dated January 7, 2011.

Conflict of interest

We hereby declare that we have no conflict of interest.

References

  1. 1.
    G.S. Lotey, N.K. Verma, J. Nanopart. Res. 13, 5397 (2011)CrossRefGoogle Scholar
  2. 2.
    M.S. Dresselhaus, I.L. Thomas, Nature 414, 332 (2001)CrossRefGoogle Scholar
  3. 3.
    B. O’Regan, M. Gratzel, Nature 353, 737 (1991)CrossRefGoogle Scholar
  4. 4.
    A. Kay, M. Gratzel, Chem. Mater. 14, 2930 (2002)CrossRefGoogle Scholar
  5. 5.
    Z. Lan, J. Wu, J. Lin, M. Huang, J. Mater. Sci.: Mater. Electron. 21, 833 (2010)CrossRefGoogle Scholar
  6. 6.
    D.N. Srivastava, S. Chappel, O. Palchik, A. Zaban, A. Gedanken, Langmuir 18, 4160 (2002)CrossRefGoogle Scholar
  7. 7.
    A.R. Rao, V. Dutta, Nanotechnology 19, 445712 (2008)CrossRefGoogle Scholar
  8. 8.
    F. Lenzmann, J. Krueger, S. Burnside, K. Brooks, M. Gratzel, D. Gal, S. Ruhle, D. Cahen, J. Phys. Chem. B. 105, 6347 (2001)CrossRefGoogle Scholar
  9. 9.
    H.M. Cheng, W.H. Chiu, C.H. Lee, S.Y. Tsai, W.F. Hsieh, J. Phys. Chem. C 112, 16359 (2008)CrossRefGoogle Scholar
  10. 10.
    T.P. Chou, Q. Zhang, G. Cao, J. Phys. Chem. C 111, 18804 (2007)CrossRefGoogle Scholar
  11. 11.
    D.B. Menzies, Q. Dai, L. Bourgeois, R.A. Caruso, Y.B. Cheng, G.P. Simon, L. Spiccia, Nanotechnology 18, 125608 (2007)CrossRefGoogle Scholar
  12. 12.
    Q. Zhang, G. Cao, Nano. Today 6, 91 (2011)CrossRefGoogle Scholar
  13. 13.
    M. Kaur, N. K. Verma, J. Mater. Sci. Mater. Electron. DOI  10.1007/s10854-013-1293-0, (2013)
  14. 14.
    M. Wang, C. Huang, Y. Cao, Q. Yu, W. Guo, Q. Huang, Y. Liu, Z. Huang, J. Huang, H. Wang, Z. Deng, Appl. Phys. Lett. 94, 263506 (2009)CrossRefGoogle Scholar
  15. 15.
    M. Law, L.E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt, P. Yang, J. Phys. Chem. B. 110, 22652 (2006)CrossRefGoogle Scholar
  16. 16.
    Z.S. Wang, M. Yanagida, K. Sayama, H. Sugihara, Chem. Mater. 18, 2912 (2006)CrossRefGoogle Scholar
  17. 17.
    B.R. Rehani, P.B. Joshi, K.N. Lad, A. Pratap, Indian J Pure Appl. Phy. 44, 157 (2006)Google Scholar
  18. 18.
    Y. Li, Y.L. Zou, Mater. Sci.Pol. 28, 741 (2010)Google Scholar
  19. 19.
    Y. Liu, L. Luo, G. Chen, M. Xie, Z. Yu, Iran. Polym. J. 19(3), 207 (2010)Google Scholar
  20. 20.
    J.S. Ghomi, M.A. Ghasemzadeh, S. Zahedi, J. Mex. Chem. Soc. 57(1), 1–7 (2013)Google Scholar
  21. 21.
    C.N. Liu, B. Ozkaya, S. Steves, P. Awakowicz, G. Grundmeier, J. Phys. D Appl. Phys. 46, 084015 (2013)CrossRefGoogle Scholar
  22. 22.
    S. Zandi, P. Kamelin, H. Salamati, H. Ahmadvand, M. Hakimi, Phys. B 406, 3215 (2011)CrossRefGoogle Scholar
  23. 23.
    S. K. Mishra, R. K. Srivastava, S. G. Prakash, R. S. Yadav, A. C. Panday Opto–Electronics Review 18(4), 467 (2010)Google Scholar
  24. 24.
    A.K. Srivastava, Praveen, M. Arora, S.K. Gupta, B.R. Chakraborty, S. Chandra, S. Toyoda, H. Bahadur, J. Mater. Sci. Technol. 26, 11–986 (2010)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Nano Research Lab, School of Physics and Materials ScienceThapar UniversityPatialaIndia

Personalised recommendations