Journal of Materials Science: Materials in Electronics

, Volume 24, Issue 12, pp 4919–4924

Investigation of dual ion beam sputtered transparent conductive Ga-doped ZnO films

  • Saurabh Kumar Pandey
  • Sushil Kumar Pandey
  • Shruti Verma
  • M. Gupta
  • V. Sathe
  • Shaibal Mukherjee
Article

Abstract

Ga-doped ZnO (GZO) transparent conducting films were deposited on sapphire (0001) substrates using dual ion beam sputtering deposition system. The impact of growth temperature on the structural, morphological, elemental, optical, and electrical properties was thoroughly investigated and reported. X-ray diffraction measurements explicitly confirmed that all GZO films had (002) preferred crystal orientation. The film deposited at 400 °C exhibited the narrowest full-width at half-maximum value of 0.24° for (002) crystalline plane and the lowest room temperature electrical resistivity of 4.11 × 10−3 Ω cm. The Raman spectra demonstrated the vibrational modes at 576 and 650–670 cm−1, associated with native oxygen vacancies and elemental Ga doping in ZnO lattice, respectively. All doped films showed an overall transmittance of above 95 % in the visible spectra. A correlation between structural, optical, elemental, and electrical properties with GZO growth temperature was established.

References

  1. 1.
    D.C. Look, Mater. Sci. Eng. B 80, 383 (2001)CrossRefGoogle Scholar
  2. 2.
    C.F. Zhang, Z.W. Dong, G.J. You, S.X. Qian, H. Deng, Opt. Lett. 31, 3345 (2006)CrossRefGoogle Scholar
  3. 3.
    Y.F. Chen, N.T. Tuan, Y. Segawa, H. Ko, S. Hong, T. Yao, Appl. Phys. Lett. 78, 1469 (2001)CrossRefGoogle Scholar
  4. 4.
    V. Assuncao, E. Fortunato, A. Marques, H. Aguas, I. Ferreira, M.E.V. Costa, R. Martins, Thin Solid Films 427, 401 (2003)CrossRefGoogle Scholar
  5. 5.
    S. Kim, W.I. Lee, E.H. Lee, S.K. Hwang, C. Lee, J. Mater. Sci. 42, 4845 (2007)CrossRefGoogle Scholar
  6. 6.
    X. Hu, J. Ma, F. Ji, Y. Wang, X. Zhang, C. Cheng, H. Ma, J. Cryst. Growth 274, 474 (2005)CrossRefGoogle Scholar
  7. 7.
    V. Assuncao, E. Fortunato, A. Marques, A. Goncalves, I. Ferreira, H. Aguas, R. Martins, Thin Solid Films 442, 102 (2006)CrossRefGoogle Scholar
  8. 8.
    S.H. Park, H.M. Kim, B.R. Rhee, E.Y. Ko, S.H. Shon, Jpn. J. Appl. Phys. 40, 1429 (2001)CrossRefGoogle Scholar
  9. 9.
    C.E. Kima, P. Moon, I. Yun, S. Kimb, J.-M. Myoung, H.W. Jang, J. Bang, Exp. Syst. Applic. 38, 2823 (2011)CrossRefGoogle Scholar
  10. 10.
    H.M. Ali, H.A. Mohamed, S.H. Mohamed, Eur. Phys. J. Appl. Phys. 31, 87 (2005)CrossRefGoogle Scholar
  11. 11.
    K.-S. Shin, K.-H. Lee, H.H. Lee, D. Choi, S.-W. Kim, J. Phys. Chem. C 114, 15782 (2010)CrossRefGoogle Scholar
  12. 12.
    S.M. Park, T. Ikegami, K. Ebihara, Thin Solid Films 513, 90 (2006)CrossRefGoogle Scholar
  13. 13.
    V. Khranovskyy, U. Grossner, O. Nilsen, V. Lazorenko, G.V. Lashkarev, B.G. Svensson, R. Yakimova, Thin Solid Films 515, 472 (2006)CrossRefGoogle Scholar
  14. 14.
    A.R. Kaul, O.Y. Gorbenko, A.N. Botev, L.I. Burova, Superlatt. Microstru. 38, 272 (2005)CrossRefGoogle Scholar
  15. 15.
    Q.B. Ma, Z.Z. Ye, H.P. He, J.R. Wang, L.P. Zhu, B.H. Zhao, Mater. Character. 59, 124–128 (2008)CrossRefGoogle Scholar
  16. 16.
    K. Nakahara, H. Takasu, P. Fons, K. Iwata, A. Yamada, K. Matsubara, R. Hunger, S. Niki, J. Crys, Growth 227–228, 923 (2001)CrossRefGoogle Scholar
  17. 17.
    H.C. Park, D. Byun, B. Angadi, D.H. Park, W.K. Choi, J.W. Choi, Y.S. Jung, J. Appl. Phys. 102, 073114 (2007)CrossRefGoogle Scholar
  18. 18.
    C.H. Choi, S.H. Kim, J. Crys. Growth 283, 170–179 (2005)CrossRefGoogle Scholar
  19. 19.
    L.J Lin, D.E Prober, Appl. Phys. Lett. 49, 7 (1986)Google Scholar
  20. 20.
    S.K. Pandey, S.K. Pandey, C. Mukherjee, P. Mishra, M. Gupta, S.R. Barman, S.W. D’Souza and S. Mukherjee, J. Mater Sci. Mater Electron 24, 7 (2013)Google Scholar
  21. 21.
    S.K. Pandey, S.K. Pandey, U.P. Deshpande, V. Awasthi, A. Kumar, M. Gupta, and S. Mukherjee, Semicond. Sci. Technol. 28, 085014(1–7), (2013)Google Scholar
  22. 22.
    W. Jeong, G. Park, Sol. Energy Mater. Sol. Cells 65, 37 (2001)CrossRefGoogle Scholar
  23. 23.
    B.J. Jin, S. Im, S.Y. Lee, Thin Solid Films 366, 107 (2000)CrossRefGoogle Scholar
  24. 24.
    S.H. Jeong, B.S. Kim, B.T. Lee, Appl. Phys. Lett. 82, 2625 (2003)CrossRefGoogle Scholar
  25. 25.
    A.V. Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, J. of Lumin. 87, 454 (2000)CrossRefGoogle Scholar
  26. 26.
    D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, M.Y. Shen, T. Goto, Appl. Phys. Lett. 73, 1038 (1998)CrossRefGoogle Scholar
  27. 27.
    B. Lin, Z. Fu, Appl. Phys. Lett. 79, 943 (2001)CrossRefGoogle Scholar
  28. 28.
    S.S. Shinde, P.S. Shinde, Y.W. Oh, D. Haranath, C.H. Bhosale, K.Y. Rajpure, Appl. Surf. Sci. 258, 9969 (2012)CrossRefGoogle Scholar
  29. 29.
    C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E.M. Kaidashev, M. Lorenz, M. Grundmann, Appl. Phys. Lett. 83, 10 (2003)CrossRefGoogle Scholar
  30. 30.
    J.N. Zeng, J.K. Low, Z.M. Ren, Thomas Liew, Y.F. Lu, Appl. Surf. Sci. 197, 632 (2002)Google Scholar
  31. 31.
    F.J. Manjón, B. Marí, J. Serrano, A.H. Romero, J. Appl. Phys. 97, 053516 (2005)CrossRefGoogle Scholar
  32. 32.
    H. Gomez, A. Maldonado, M. de la L. Olvera, D.R. Acosta, Sol. Energy Mater. Sol. Cells 87, 110 (2005)Google Scholar
  33. 33.
    H. Kim, C.M. Gilmore, A. Pique, J.S. Horwitz, H. Mattoussi, H. Murata, Z.H. Kafai, D.B. Chrisey, J. Appl. Phys. 86, 6452 (1999)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Saurabh Kumar Pandey
    • 1
  • Sushil Kumar Pandey
    • 1
  • Shruti Verma
    • 1
  • M. Gupta
    • 2
  • V. Sathe
    • 2
  • Shaibal Mukherjee
    • 1
  1. 1.Hybrid Nanodevice Research Group (HNRG), Discipline of Electrical EngineeringIndian Institute of TechnologyIndoreIndia
  2. 2.University Grants Commission Department of Atomic Energy (UGC DAE) Consortium for Scientific ResearchIndoreIndia

Personalised recommendations