Properties of electrochemically deposited CdTe thin films: annealing effect

  • M. R. AsabeEmail author
  • V. P. Ubale
  • A. H. Manikshete
  • V. T. Vader
  • S. V. Rajmane
  • S. D. Delekar


CdTe thin film have been deposited onto stainless steel and fluorine doped tin oxide coated glass substrates from aqueous acidic bath using electrodeposition technique. The different preparative parameters, such as deposition time, bath temperature, pH of the bath have been optimized by photoelectrochemical (PEC) technique get good quality photosensitive material. The deposited films are annealed at different temperature in presence of air. Annealing temperature is also optimized by PEC technique. The film annealed at 200 °C showed maximum photosensitivity. Different techniques have been used to characterize the as deposited and also annealed (at 200 °C) CdTe thin film. The X-ray diffraction (XRD) analysis showed the polycrystalline nature and a significant increase in the XRD peak intensities is observed for the CdTe films after annealing. Optical absorption shows the presence of direct transition with band gap energy 1.64 eV and after annealing it decreases to 1.50 eV. Energy dispersive analysis by X-ray study for the as-deposited and annealed films showed nearly stoichiometric compound formation. Scanning electron microscopy reveals that spherically shaped grains are more uniformly distributed over the surface of the substrate for the annealed CdTe film. Photovoltaic output characteristics and spectral response of the annealed film have been carried. The fill factor and power conversion efficiency (η) of the cell are found to be 71 and 3.89 %.


Power Conversion Efficiency Annealed Film CdTe Film Optical Absorption Study CdTe Thin Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    X. Mathew, P.J. Sebastian, Sol. Energy Mater. Sol. Cells 59, 85 (1999)CrossRefGoogle Scholar
  2. 2.
    H.J. Goldsmid, J.E. Giutronich, M.M. Kalia, Sol. Energy 24, 435 (1980)CrossRefGoogle Scholar
  3. 3.
    N.G. Patel, P.G. Patel, Solid State Electrochem. 35, 1269 (1992)CrossRefGoogle Scholar
  4. 4.
    R. Chandramohan, T. Mahalingam, J.P. Chu, P.J. Sebastian, Sol. Energy Mater. Sol. Cells 81, 371 (2004)CrossRefGoogle Scholar
  5. 5.
    S.K. Deshmukh, A.V. Kokate, D.J. Sathe, Mater. Sci. Eng. B 122, 206 (2005)CrossRefGoogle Scholar
  6. 6.
    S.K. Pandey, U. Tiwari, R. Raman, C. Prakash, V. Krishna, V. Dutta, K. Zimik, Thin Solid Films 473, 54 (2005)CrossRefGoogle Scholar
  7. 7.
    B.E. McCandless, K.D. Dobson, Sol. Energy 77, 839 (2004)CrossRefGoogle Scholar
  8. 8.
    X. Mathew, J. Phys. D Appl. Phys. 33, 1565 (2000)CrossRefGoogle Scholar
  9. 9.
    A.V. Kokate, U.B. Suryavanshi, C.H. Bhosale, J. Sol. Energy 80, 156 (2006)CrossRefGoogle Scholar
  10. 10.
    P.P. Hankare, S.D. Delekar, V.M. Bhuse, P.A. Chate, K.M. Garadkar, Semicond. Sci. Technol. 20, 257 (2005)CrossRefGoogle Scholar
  11. 11.
    Y. Wada, S. Nishimatsu, J. Electrochem. Soc. 125, 1499 (1978)CrossRefGoogle Scholar
  12. 12.
    A. Morales-Acevedo, Sol. Energy Mater. Sol. Cells 90(6), 678 (2006)CrossRefGoogle Scholar
  13. 13.
    J. Van Gheluwe, J. Versluys, D. Poelman, P. Clauws, Thin Solid Films 480, 264 (2005)CrossRefGoogle Scholar
  14. 14.
    J. Terrazas, A. Rodríguez, C. Lopez, A. Escobedo, F.J. Kuhlmann, J. McClure, D. Zubía, Thin Solid Films 490, 146 (2005)CrossRefGoogle Scholar
  15. 15.
    S.S. Hegedus, B.E. McCandless, Sol. Energy Mater. Sol. Cells 88, 75 (2005)CrossRefGoogle Scholar
  16. 16.
    A.E. Rakhshani, J. Appl. Phys. 81, 7988 (1997)CrossRefGoogle Scholar
  17. 17.
    V.P. Singh, J.C. McClure, G.B. Lush, W. Wang, X. Wang, G.W. Thompson, E. Clark, Sol. Energy Mater. Sol. Cells 59, 59 (1999)CrossRefGoogle Scholar
  18. 18.
    S.A. Gamboa, P.J. Sebastian, M.A. Rivera, Sol. Energy Mater. Sol. Cells 52, 293 (1998)CrossRefGoogle Scholar
  19. 19.
    A.E. Rakhshani, Y. Makdisi, X. Mathew, N.R. Mathew, Phys. Stat. Sol. A 168, 177–187 (1998)CrossRefGoogle Scholar
  20. 20.
    X. Mathew, J. Appl. Phys. 33, 1565 (2000)Google Scholar
  21. 21.
    S. Lalitha, R. Sathyamoorthy, S. Senthilarasu, A. Subbarayan, K. Natarajan, Sol. Energy Mater. Sol. Cells 82, 187 (2004)CrossRefGoogle Scholar
  22. 22.
    J.P. Enríquez, X. Mathew, Sol. Energy Mater. Sol. Cells 81, 363 (2004)CrossRefGoogle Scholar
  23. 23.
    K. Vamsi Krishna, V. Dutta, P.D. Paulson, Thin Solid Films 444, 17 (2003)CrossRefGoogle Scholar
  24. 24.
    A. Romeo, D.L. Batzner, H. Zogg, A.N. Tiwari, Thin Solid Films 361, 420 (2000)CrossRefGoogle Scholar
  25. 25.
    J.D. Desai, C.D. Lokhande, Mater. Chem. Phys. 34, 313 (1993)CrossRefGoogle Scholar
  26. 26.
    V.V. Killedar, C.D. Lokhande, C.H. Bhosale, Indian J. Pure Appl. Phys. 36, 643 (1998)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • M. R. Asabe
    • 1
    Email author
  • V. P. Ubale
    • 2
  • A. H. Manikshete
    • 1
  • V. T. Vader
    • 1
  • S. V. Rajmane
    • 2
  • S. D. Delekar
    • 3
  1. 1.Department of ChemistryWalchand College of Arts and ScienceSolapurIndia
  2. 2.Department of ChemistryD.B.F. Dayanand College of Arts and ScienceSolapurIndia
  3. 3.Department of ChemistryShivaji UniversityKolhapurIndia

Personalised recommendations