A critical assessment of interatomic potentials for ceria with application to its elastic properties revisited

Article
  • 233 Downloads

Abstract

Doped ceria is an important electrolyte material for solid oxide fuel cell applications due to its high oxygen diffusivity. From the perspective of atomic scale computational modelling, the prediction of properties and consequently underlying mechanisms often rely on classical potential for the description of interatomic forces acting within ceria. The recent paper of Xu et al. (Solid State Ionics 181:551, 2010) reviewed several potential models and stated that the potential parameters of Grimes et al. (Philos. Mag. A 72:651, 1995) lead to poor reproduction of ceria’s thermal expansion coefficient. Here we show that this assessment is erroneous and that the Grimes et al. potential model adequately describes thermal expansion in CeO2. The calculated results are discussed in view of experimental results.

References

  1. 1.
    N.P. Brandon, S. Skinner, B.C.H. Steele, Annu. Rev. Mater. Res. 33, 183 (2003)CrossRefGoogle Scholar
  2. 2.
    J. Fleig, Annu. Rev. Mater. Res. 33, 36 (2003)CrossRefGoogle Scholar
  3. 3.
    D. Rupasov, A. Chroneos, D. Parfitt, J.A. Kilner, R.W. Grimes, S.Y. Istomin, E.V. Antipov, Phys. Rev. B 79, 172102 (2009)CrossRefGoogle Scholar
  4. 4.
    Z. Shao, S.M. Haile, J. Ahn, P.D. Ronney, Z. Zhan, S.A. Barnett, Nature 435, 795 (2005)CrossRefGoogle Scholar
  5. 5.
    A. Chroneos, R.V. Vovk, I.L. Goulatis, L.I. Goulatis, J. Alloys Compd. 494, 190 (2010)CrossRefGoogle Scholar
  6. 6.
    A. Kushima, D. Parfitt, A. Chroneos, B. Yildiz, J.A. Kilner, R.W. Grimes, Phys. Chem. Chem. Phys. 13, 2242 (2011)CrossRefGoogle Scholar
  7. 7.
    A. Chroneos, D. Parfitt, J.A. Kilner, R.W. Grimes, J. Mater. Chem. 20, 266 (2010)CrossRefGoogle Scholar
  8. 8.
    D. Parfitt, A. Chroneos, J.A. Kilner, R.W. Grimes, Phys. Chem. Chem. Phys. 12, 6834 (2010)CrossRefGoogle Scholar
  9. 9.
    N. Sata, K. Eberman, K. Eberl, J. Maier, Nature 408, 946 (2000)CrossRefGoogle Scholar
  10. 10.
    I.D. Seymour, A. Chroneos, J.A. Kilner, R.W. Grimes, Phys. Chem. Chem. Phys. 13, 15305 (2011)CrossRefGoogle Scholar
  11. 11.
    X.X. Guo, I. Matei, J.S. Lee, J. Maier, Appl. Phys. Lett. 92, 103102 (2007)CrossRefGoogle Scholar
  12. 12.
    J.G. Barriocanal, A.R. Calzada, M. Varela, Z. Sefrioui, E. Iborra, C. Leon, S.J. Pennycook, J. Santamaria, Science 321, 676 (2008)CrossRefGoogle Scholar
  13. 13.
    J.A. Kilner, Nature Mater. 7, 838 (2008)CrossRefGoogle Scholar
  14. 14.
    H. Wang, A. Chroneos, C. Jiang, U. Schwingenschlögl, Phys. Chem. Chem. Phys. 14, 11737 (2012)CrossRefGoogle Scholar
  15. 15.
    H. Wang, A. Chroneos, U. Schwingenschlögl, J. Chem. Phys. 138, 224705 (2013)CrossRefGoogle Scholar
  16. 16.
    Z. Khakpour, A. Maghsoudipour, A.A. Youzbashi, K. Ahmadi, J. Mater. Sci.: Mater. Electron. 23, 786 (2012)CrossRefGoogle Scholar
  17. 17.
    N.S. Arul, D. Mangalavaj, T.W. Kim, P.C. Chen, N. Ponpandian, P. Meena, Y. Masuda, J. Mater. Sci.: Mater. Electron. 24, 1644 (2013)CrossRefGoogle Scholar
  18. 18.
    M. Yashima, T. Takizawa, J. Phys. Chem. C 114, 2385 (2010)CrossRefGoogle Scholar
  19. 19.
    A. Lashtabeg, S.J. Skinner, J. Mater. Chem. 16, 3161 (2006)CrossRefGoogle Scholar
  20. 20.
    P.P. Dholabhai, J.B. Adams, P. Crozier, R. Sharma, Phys. Chem. Chem. Phys. 12, 7904 (2010)CrossRefGoogle Scholar
  21. 21.
    I.E.L. Stephens, J.A. Kilner, Solid State Ionics 177, 669 (2006)CrossRefGoogle Scholar
  22. 22.
    L. Minervini, M.O. Zacate, R.W. Grimes, Solid State Ionics 116, 339 (1999)CrossRefGoogle Scholar
  23. 23.
    B. Wang, R.J. Lewis, A.N. Cormack, Solid State Ionics 182, 8 (2011)CrossRefGoogle Scholar
  24. 24.
    M.J.D. Rushton, A. Chroneos, S.J. Kilner, J.A. Kilner, R.W. Grimes, Solid State Ionics 230, 37 (2013)CrossRefGoogle Scholar
  25. 25.
    D. Marrocchelli, S.R. Bishop, H.L. Tuller, B. Yildiz, Adv. Funct. Mater. 22, 1958 (2012)CrossRefGoogle Scholar
  26. 26.
    D. Marrocchelli, S.R. Bishop, J. Kilner, J. Mater. Chem. A 1, 7673 (2013)CrossRefGoogle Scholar
  27. 27.
    H. Xu, R.K. Behera, Y. Wang, F. Ebrahimi, S.B. Sinnott, E.D. Wachsman, S.R. Phillpot, Solid State Ionics 181, 551 (2010)CrossRefGoogle Scholar
  28. 28.
    R.W. Grimes, D.J. Binks, A.B. Lidiard, Philos. Mag. A 72, 651 (1995)CrossRefGoogle Scholar
  29. 29.
    G. Busker, A. Chroneos, R.W. Grimes, I.W. Chen, J. Am. Ceram. 82, 1553 (1999)CrossRefGoogle Scholar
  30. 30.
    M. Born, J.E. Mayer, Z. Phys. 75, 1 (1932)CrossRefGoogle Scholar
  31. 31.
    R.A. Buckingham, Proc. R. Soc. Lond. A Math. Phys. Sci. 168, 264 (1938)CrossRefGoogle Scholar
  32. 32.
    M.P. Allen, D.J. Tildesley, Computer simulation of liquids (Oxford University Press, Oxford, 1989)Google Scholar
  33. 33.
    P.P. Ewald, Ann. Phys. 64, 253 (1921)CrossRefGoogle Scholar
  34. 34.
    B. Dick, A. Overhauser, Phys. Rev. 112, 90 (1958)CrossRefGoogle Scholar
  35. 35.
    P.J. Mitchell, D. Fincham, J. Phys.: Cond. Matter 5, 1031 (1993)CrossRefGoogle Scholar
  36. 36.
    A. Togo, F. Oba, I. Tanaka, Phys. Rev. B 78, 134106 (2008)CrossRefGoogle Scholar
  37. 37.
    J.D. Gale, Philos. Mag. A 73, 3 (1996)CrossRefGoogle Scholar
  38. 38.
    J.D. Gale, J. Chem. Soc., Faraday Trans. 93, 629 (1997)CrossRefGoogle Scholar
  39. 39.
    J.R. Sims, R.N. Blumenthal, High Temp. Sci. 8, 99 (1976)Google Scholar
  40. 40.
    S. Vyas, R.W. Grimes, D.H. Gay, A.L. Rohl, J. Chem. Soc., Faraday Trans. 94, 427 (1998)CrossRefGoogle Scholar
  41. 41.
    A. Chroneos, K. Desai, S.E. Redfern, M.O. Zacate, R.W. Grimes, J. Mater. Sci. 41, 675 (2006)CrossRefGoogle Scholar
  42. 42.
    M.R. Levy, C.R. Stanek, A. Chroneos, R.W. Grimes, Solid State Sci. 9, 588 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of MaterialsImperial College LondonLondonUK
  2. 2.Engineering and InnovationThe Open UniversityMilton KeynesUK

Personalised recommendations