Size-dependent magnetic and dielectric properties of Tb-doped BiFeO3 nanoparticles

  • Gitanjali DhirEmail author
  • Gurmeet Singh Lotey
  • Poonam Uniyal
  • N. K. Verma


Pure and Tb-doped BiFeO3 nanoparticles have been prepared by sol–gel method. The nanoparticles of different size have been obtained by the calcination of synthesized nanoparticles at different temperatures. The effects of Tb doping and size of nanoparticles on the crystal structure, magnetic and electrical properties have been studied. The partial substitution of Tb ions results in a change from rhombohedral (x = 0) to orthorhombic (x = 0.15) structure. The average crystallite size varies from 14 to 40 nm. The synthesized nanoparticles possess ferromagnetic behavior. The saturation magnetization is high for the Tb-doped BiFeO3 nanoparticles calcined at 450 °C, and it decrease with the increase of size. The dielectric constant and loss improve with Tb doping and size. The relaxation behavior of dielectric loss is of Debye type. The dielectric loss peaks shift to the lower frequencies with increase in the size of Tb-doped BiFeO3 nanoparticles.


Calcination Temperature BiFeO3 Magnetoelectric Coupling Multiferroic Property Nitrate Pentahydrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research work is supported by Government of India, Department of Atomic Energy (DAE), Board of Research in Nuclear Sciences (BRNS) vide sanction No. 2012/37P/48/BRNS.

Conflict of interest

We hereby declare that we have no conflict of interest.


  1. 1.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)CrossRefGoogle Scholar
  2. 2.
    N.A. Hill, J. Phys. Chem. B 104, 6694 (2000)CrossRefGoogle Scholar
  3. 3.
    H. Schmid, Ferroelectrics 162, 317 (1994)CrossRefGoogle Scholar
  4. 4.
    M. Fiebig, J. Phys. D 38, R123 (2005)CrossRefGoogle Scholar
  5. 5.
    C.W. Nan, Phys. Rev. B 50, 6082 (1994)CrossRefGoogle Scholar
  6. 6.
    S.K. Srivastav, N.S. Gajbhiye, J. Am. Ceram. Soc. 95, 3678 (2012)CrossRefGoogle Scholar
  7. 7.
    G.S. Lotey, N.K. Verma, J. Nanopart. Res. 14, 1 (2012)CrossRefGoogle Scholar
  8. 8.
    G.S. Lotey, N.K. Verma, Superlattice Microst. 53, 184 (2012)CrossRefGoogle Scholar
  9. 9.
    G.S. Lotey, N.K. Verma, J. Nanopart. Res. 15, 1 (2013)CrossRefGoogle Scholar
  10. 10.
    P. Uniyal, K.L. Yadav, Mater. Lett. 62, 2858 (2008)CrossRefGoogle Scholar
  11. 11.
    P. Uniyal, K.L. Yadav, J. Alloy. Compd. 511, 149 (2012)CrossRefGoogle Scholar
  12. 12.
    P. Uniyal, K.L. Yadav, J. Appl. Phys. 105, 07D914 (2009)CrossRefGoogle Scholar
  13. 13.
    F.Z. Qian, J.S. Jiang, D.M. Jiang, W.G. Zhang, J.H. Liu, J. Phys. D Appl. Phys. 43, 025403 (2010)CrossRefGoogle Scholar
  14. 14.
    J. Liu, L. Fang, F. Zheng, S. Ju, M. Shen, Appl. Phys. Lett. 95, 022511 (2009)CrossRefGoogle Scholar
  15. 15.
    Y. Wang, C.W. Nan, J. Appl. Phys. 103, 024103 (2012)CrossRefGoogle Scholar
  16. 16.
    D.P. Dutta, O.D. Jayakumar, A.K. Tyagi, K.G. Girija, C.G.S. Pillai, G. Sharm, Nanoscale 2, 1149 (2010)CrossRefGoogle Scholar
  17. 17.
    K. Chakrabarti, K. Das, B. Sarkar, S. Ghosh, S.K. De, G. Sinha, J. Lahtinen, Appl. Phys. Lett. 101, 042401 (2012)CrossRefGoogle Scholar
  18. 18.
    S.K. Mandal, T. Rakshit, S.K. Ray, S.K. Mishra, P.S.R. Krishna, A. Chandra, J. Phys.: Condens. Matter 25, 055303 (2013)CrossRefGoogle Scholar
  19. 19.
    Y.H. Tang, T.C. Han, H.L. Liu, J.G. Lin, J. Supercond. Nov. Magn. 25, 2753 (2012)CrossRefGoogle Scholar
  20. 20.
    T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Nano Lett. 7, 766 (2007)CrossRefGoogle Scholar
  21. 21.
    S.M. Selbach, T. Tybell, M.A. Einarsrud, T. Grande, Chem. Mater. 19, 6478 (2007)CrossRefGoogle Scholar
  22. 22.
    S. Goswami, D. Bhattacharya, P. Choudhury, J. Appl. Phys. 109, 07D737 (2011)CrossRefGoogle Scholar
  23. 23.
    R. Jaiswal, K. Das, P.M. Vivekanand, S. Abraham, P. Adyanthaya, J. Poddar, Phys. Chem. C 114, 2108 (2010)CrossRefGoogle Scholar
  24. 24.
    R. Mazumder, S. Ghosh, P. Mondal, D. Bhattacharya, S. Dasgupta, J. Appl. Phys. 100, 033908 (2006)CrossRefGoogle Scholar
  25. 25.
    J.W. Lin, T. Tite, H. Tang, C.S. Lue, Y.M. Chang, J.G. Lin, J. Appl. Phys. 111, 07D910 (2012)CrossRefGoogle Scholar
  26. 26.
    P. Debye, Ann. Phys. 351, 809 (1915)CrossRefGoogle Scholar
  27. 27.
    J.B. Macchesney, H.J. Williams, R.C. Sherwood, J.F. Potter, J. Chem. Phys. 44, 596 (1966)CrossRefGoogle Scholar
  28. 28.
    F.Z. Qian, J.S. Jiang, S.Z. Guo, D.M. Jiang, W.G. Zhang, J. Appl. Phys. 106, 084312 (2009)CrossRefGoogle Scholar
  29. 29.
    C. Yang, J. Jiang, C.M. Wang, W.G. Zhang, J. Phys. Chem. Solids 73, 115 (2012)CrossRefGoogle Scholar
  30. 30.
    K. Chakrabarti, K. Das, B. Sarkar, S.K. De, J. Appl. Phys. 110, 103905 (2011)CrossRefGoogle Scholar
  31. 31.
    H.Z. Ling, Z.H. Feng, Y. Jie, K.Y. Qing, Y.H. Jing, J.H. Bo, C.M. Sheng, Chin. Phys. Lett. 28, 037702 (2011)CrossRefGoogle Scholar
  32. 32.
    R. Guo, L. Fang, W. Dong, F. Zheng, M. Shen, J. Phys. Chem. C 114, 21390 (2010)CrossRefGoogle Scholar
  33. 33.
    R. Mazumder, P.S. Devi, D. Bhattacharya, P. Choudhury, A. Sen, Appl. Phys. Lett. 91, 062510 (2007)CrossRefGoogle Scholar
  34. 34.
    Y. Hu, L. Fei, Y. Zhang, J. Yuan, Y. Wang, H. Gu, J. Nanomater. 2011, 797639 (2011)CrossRefGoogle Scholar
  35. 35.
    B. Bhushan, Z. Wang, J. Tol, N.S. Dalal, A. Basumallick, N.Y. Vasanthacharya, S. Kumar, D. Das, J. Am. Cera. Soc. 95, 1985 (2012)CrossRefGoogle Scholar
  36. 36.
    R. Das, T. Sarkar, K. Mandal, J. Phys. D Appl. Phys. 45, 455002 (2012)CrossRefGoogle Scholar
  37. 37.
    S.K. Mukherjee, M. Hossain, M. Pal, S. Basu, Appl. Nanosci. 2, 305 (2012)CrossRefGoogle Scholar
  38. 38.
    W. Hu, L. Li, W. Tong, G. Li, T. Yan, J. Mater. Chem. 20, 8659 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Gitanjali Dhir
    • 1
    Email author
  • Gurmeet Singh Lotey
    • 1
  • Poonam Uniyal
    • 1
  • N. K. Verma
    • 1
  1. 1.Nano Research Lab, School of Physics and Materials ScienceThapar UniversityPatialaIndia

Personalised recommendations