Undoped, nitrogen-doped and boron-doped multiwalled carbon nanotube/poly(vinyl alcohol) composite as active layer in simple hydrostatic pressure sensors

  • Messai A. Mamo
  • Alan O. Sustaita
  • Zikhona N. Tetana
  • Neil J. Coville
  • Ivo A. Hümmelgen
Article

Abstract

We report on hydrostatic pressure sensors prepared using 10 % w/w multiwalled carbon nanotube (MWCNT)/poly(vinyl alcohol) composites. Three types of carbon nanotubes were used in the composites: undoped MWCNTs, nitrogen-doped MWCNTs and boron-doped MWCNTs (B-MWCNTs). The sensor response was tested using an alternating current input, measuring the capacitance and conductance outputs. The sensors based on the three composites show a linear capacitance and conductance sensitivity pressure dependence in the range 50–120 kPa, but a higher sensitivity to pressure dependence above this interval. The highest angular coefficient of the sensitivity, which reached 0.092 kPa−1, was observed for the capacitance sensitivity of the B-MWCNT based composite.

References

  1. 1.
    I. Manunzaa, A. Sulis, A. Bonfiglio, Biosens. Bioelectron. 22, 2775 (2007)CrossRefGoogle Scholar
  2. 2.
    Y.C. Chao, W.J. Lai, C.Y. Chen, H.F. Meng, H.W. Zan, S.F. Horng, Appl. Phys. Lett. 95, 253306 (2009)CrossRefGoogle Scholar
  3. 3.
    J.H. Kim, Q. Sun, S. Seo, Org. Electron. 11, 964 (2010)CrossRefGoogle Scholar
  4. 4.
    M. Knite, V. Teteris, A. Kiploka, J. Kaupuzs, Sens. Actuators A 110, 142 (2004)CrossRefGoogle Scholar
  5. 5.
    K. Arshak, D. Morris, A. Arshak, O. Korostynska, E. Moore, Sens. Actuators A 132, 199 (2006)CrossRefGoogle Scholar
  6. 6.
    K. Arshak, O. Korostynska, J. Harris, D. Morris, A. Arshak, E. Jafer, Thin Solid Films 516, 1493 (2008)CrossRefGoogle Scholar
  7. 7.
    W.S. Machado, P.L. Athayde, M.A. Mamo, W.A.L. van Otterlo, N.J. Coville, I.A. Hümmelgen, Org. Electron. 11, 1736 (2010)CrossRefGoogle Scholar
  8. 8.
    M.A. Mamo, W.S. Machado, N.J. Coville, I.A. Hümmelgen, J. Mater. Sci. Mater. Electron. 23, 1332 (2012)CrossRefGoogle Scholar
  9. 9.
    Y. Kuronuma, T. Takeda, Y. Shindo, F. Narita, Z. Wei, Compos. Sci. Technol. 72, 1678 (2012)CrossRefGoogle Scholar
  10. 10.
    S. Bal, S.S. Samal, Bull. Mater. Sci. 30, 379 (2007)CrossRefGoogle Scholar
  11. 11.
    Z.N. Tetana, S.D. Mhlanga, G. Bepete, R.W.M. Krause, N.J. Coville, S. Afr. J. Chem. 65, 39 (2012)Google Scholar
  12. 12.
    Z.N. Tetana, Dissertation, Johannesburg, 2012Google Scholar
  13. 13.
    S.D. Mhlanga, K.C. Mondal, R. Carte, M.J. Witcomb, N.J. Coville, S. Afr. J. Chem. 62, 67 (2009)Google Scholar
  14. 14.
    M.W.C.C. Greenshields, M.S. Meruvia, I.A. Hümmelgen, N.J. Coville, S.D. Mhlanga, H.J. Ceraglioli, J.C.R. Quispe, V. Baranauskas, J. Nanosci. Nanotechnol. 11, 2384 (2011)CrossRefGoogle Scholar
  15. 15.
    E.N. Nxumalo, V.O. Nyamori, N.J. Coville, J. Organomet. Chem. 693, 2942 (2008)CrossRefGoogle Scholar
  16. 16.
    Q. Wang, H. Li, L. Chen, X. Huang, Carbon 39, 2211 (2001)CrossRefGoogle Scholar
  17. 17.
    N. Hu, Y. Karube, C. Yan, Z. Masuda, H. Fukunaga, Acta Mater. 56, 2929 (2008)CrossRefGoogle Scholar
  18. 18.
    A.T. Fromhold, Quantum Mechanics for Applied Physics and Engineering (Dover, New York, 1981)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Messai A. Mamo
    • 1
  • Alan O. Sustaita
    • 1
    • 2
  • Zikhona N. Tetana
    • 3
  • Neil J. Coville
    • 3
  • Ivo A. Hümmelgen
    • 1
  1. 1.Departamento de FísicaUniversidade Federal do ParanáCuritibaBrazil
  2. 2.Advanced Materials DepartmentIPICYTSan Luis PotosíMexico
  3. 3.DST/NRF Centre of Excellence in Strong Materials and Molecular Sciences Institute, School of ChemistryUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations