Advertisement

Magnetodielectric properties of rare earth metal-doped BiFeO3 nanoparticles

  • Gurmeet Singh LoteyEmail author
  • N. K. Verma
Article

Abstract

Pure and rare earth metal ions (Gd3+, Tb3+, Dy3+)-doped BiFeO3 nanoparticles have been synthesized by the sol–gel method. The effect of doping of rare earth metal ions on structural, magnetic, dielectric and magnetodielectric properties of synthesized nanoparticles have been investigated. Synthesized nanoparticles have been found to be possessing spherical morphology, with average particle size, 25–46 nm. Structural study confirms that 15 % mole fraction doping of the rare earth metal ions results in structural transformation from rhombohedral to orthorhombic phase. Magnetic study reveals that the synthesized nanoparticles exhibit well saturated ferromagnetic magnetic loops. Dielectric measurements show that doping of rare earth metal ions results in high dielectric constant as compared to that of pure BiFeO3. Magnetoelectric coupling in the synthesized nanoparticles, established by performing magnetodielectric measurements, reveals that the doped nanoparticles exhibit high magnetodielectric coefficient as compared to its pure form. The high value of saturation magnetization, 5.22 emu/g, dielectric constant, 900 and magnetodielectric coefficient, 5.82 %, have been observed in Dy-doped BiFeO3 nanoparticles. The observed trend in the properties of the synthesized nanoparticles has been explained on the basis of doping as well as size of the synthesized nanoparticles.

Keywords

BiFeO3 Relative Dielectric Constant Tolerance Factor Magnetoelectric Coupling Pure BiFeO3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

One of the authors, Gurmeet Singh Lotey, gratefully acknowledges the Department of Science and Technology (DST), Government of India, for awarding him the INSPIRE (Innovation in Science Pursuit for Inspired Research) fellowship to carry out this research work.

References

  1. 1.
    E. Roduner, Nanoscopic materials: size-dependent phenomena, 1st edn. (Royal Society of Chemistry, London, 2006)Google Scholar
  2. 2.
    A. Jaiswal, Introduction to nanomultiferroics: fabrication of magnetoelectrics and their size dependent tunable properties, 1st edn. (LAP LAMBERT Academic Publishing, Köln, 2012)Google Scholar
  3. 3.
    F. Nasirpouri, A. Nogaret, Nanomagnetism and spintronics: fabrication, materials, characterization and applications, 1st edn. (World Scientific Publishing Company, Teaneck, 2010)CrossRefGoogle Scholar
  4. 4.
    T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Nano Lett. 7(3), 766 (2007)CrossRefGoogle Scholar
  5. 5.
    S. Goswami, D. Bhattacharya, P. Choudhury, B. Ouladdiaf, T. Chatterji, Appl. Phys. Lett. 99, 073106 (2011)CrossRefGoogle Scholar
  6. 6.
    N.A. Hill, J. Phys. Chem. B 104, 6694 (2000)CrossRefGoogle Scholar
  7. 7.
    S.M. Selbach, T. Tybell, M.A. Einarsrud, T. Grande, Chem. Mater. 19, 6478 (2007)CrossRefGoogle Scholar
  8. 8.
    S. Shetty, V.R. Palkar, R. Pinto, PRAMANA. J. Phy. 58(5 & 6), 1027 (2002)Google Scholar
  9. 9.
    A. Jaiswal, R. Das, K. Vivekanand, P. Abraham, S. Adyanthaya, P. Poddar, J. Phys. Chem. C 114, 2108 (2010)CrossRefGoogle Scholar
  10. 10.
    R. Mazumder, P.S. Devi, D. Bhattacharya, P. Choudhury, A. Sen, M. Raja, Appl. Phys. Lett. 91, 062510 (2007)CrossRefGoogle Scholar
  11. 11.
    G.S. Lotey, N.K. Verma, J. Nanopart. Res. 14, 742 (2012)CrossRefGoogle Scholar
  12. 12.
    G.S. Lotey, N.K. Verma, Superlattice Microst. 53, 184 (2013)CrossRefGoogle Scholar
  13. 13.
    G.S. Lotey, N.K. Verma, J. Nanopart. Res. 15, 1553 (2013)CrossRefGoogle Scholar
  14. 14.
    S. Karimi, I.M. Reaney, Y. Han, J. Pokorny, I. Sterianou, J. Mater. Sci. 44, 5102 (2009)CrossRefGoogle Scholar
  15. 15.
    T. Karthik, T.D. Rao, A. Srinivas, S. Asthana, arXiv:1206.5606 (2012)Google Scholar
  16. 16.
    Y. Yao, W. Liu, Y. Chan, C. Leung, C. Mak, B. Ploss, Int. J. Appl. Ceram. Technol. 8(5), 1246 (2011)CrossRefGoogle Scholar
  17. 17.
    L. Neel, Compt. Rend. 252, 4075 (1961)Google Scholar
  18. 18.
    L. Neel, Compt. Rend. 252, 9 (1961)Google Scholar
  19. 19.
    L. Neel, Compt. Rend. 252, 203 (1961)Google Scholar
  20. 20.
    W.M. Zhu, L.W. Su, Z.G. Ye, W. Ren, Appl. Phys. Lett. 94, 142908 (2009)CrossRefGoogle Scholar
  21. 21.
    P. Uniyal, K.L. Yadav, J. Appl. Phys., 105, 07D914 (2009)Google Scholar
  22. 22.
    J.C. Maxwell, Electricity and magnetism (Oxford University Press, London, 1973)Google Scholar
  23. 23.
    C.G. Koops, Phys. Rev. B 83, 121 (1951)CrossRefGoogle Scholar
  24. 24.
    B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, W. Jo, Nature 401, 682 (1999)CrossRefGoogle Scholar
  25. 25.
    D.R. Patil, S.A. Lokare, R.S. Devan, S.S. Chougule, C.M. Kanamadi, Y.D. Kokekar, B.K. Chougule, Mater. Chem. Phys. 104, 254 (2007)CrossRefGoogle Scholar
  26. 26.
    S.K. Pradhan, B.K. Roul, J. Phys. Chem. Solids 72(10), 1180 (2011)CrossRefGoogle Scholar
  27. 27.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)CrossRefGoogle Scholar
  28. 28.
    G. Catalan, Appl. Phys. Lett. 88, 102902 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Nano Research Lab, School of Physics & Materials ScienceThapar UniversityPatialaIndia

Personalised recommendations