Journal of Materials Science: Materials in Electronics

, Volume 24, Issue 9, pp 3611–3616 | Cite as

Room temperature ferromagnetism in Tb-doped ZnO dilute magnetic semiconducting nanoparticles

  • Gurmeet Singh LoteyEmail author
  • Jaspal Singh
  • N. K. Verma


Pure and Tb-doped ZnO nanoparticles have been synthesized by chemical co-precipitation method. The transmission electron microscopy study reveals the spherical morphology of synthesized nanoparticles with average particle size 14–18 nm. The effect of Tb-doping on structural, optical and magnetic properties has been studied. X-ray diffraction shows that pure and Tb-ZnO nanoparticles exhibit wurtzite structure having hexagonal phase with primitive unit cell. It further reveals that there is no effect of Tb-doping on the X-ray diffraction pattern up to 2 % doping, however, higher doping concentration result in accumulation of Tb on ZnO surface. Photoluminescence spectra reveal that the doping Tb in ZnO changes crystallographic structure generating non-radiative oxygen vacancies. Three emission peaks located around 423, 485 and 515 nm has been observed. Pure ZnO nanoparticles show diamagnetic character, however, Tb-doped ZnO nanoparticles exhibit room temperature ferromagnetism. The correlation between defects generated upon Tb-doping to the observed ferromagnetism, in the synthesized nanoparticles, has been reported.


Oxygen Vacancy Room Temperature Ferromagnetism High Doping Concentration Primitive Unit Cell Bind Magnetic Polaron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



One of the authors, Gurmeet Singh Lotey, gratefully acknowledges the Department of Science and Technology (DST), Government of India, for awarding him the INSPIRE (Innovation in Science Pursuit for Inspired Research) fellowship to carry out this research work.

Supplementary material

10854_2013_1292_MOESM1_ESM.doc (718 kb)
Supplementary material 1 (DOC 718 kb)


  1. 1.
    J.K. Furdyna, J. Appl. Phys. 64, R29 (1988)CrossRefGoogle Scholar
  2. 2.
    J.M.D. Coey, Curr. Opin. Solid State Mater. 10, 83 (2006)CrossRefGoogle Scholar
  3. 3.
    I. Zutic, J. Fabian, S.D. Sarma, Rev. Mod. Phys. 76, 323 (2004)CrossRefGoogle Scholar
  4. 4.
    S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnár, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488 (2001)CrossRefGoogle Scholar
  5. 5.
    S. Datta, B. Das, Appl. Phys. Lett. 56, 665 (1990)CrossRefGoogle Scholar
  6. 6.
    T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 5455 (2000)CrossRefGoogle Scholar
  7. 7.
    C. Liu, F. Yun, H. Morkoç, J. Mater. Sci. Mater. Electron. 16, 555 (2005)CrossRefGoogle Scholar
  8. 8.
    Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)CrossRefGoogle Scholar
  9. 9.
    D.C. Look, Mater. Sci. Eng. B 80, 383 (2001)CrossRefGoogle Scholar
  10. 10.
    J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173 (2005)CrossRefGoogle Scholar
  11. 11.
    S.J. Pearton, W.H. Heo, M. Ivill, D.P. Norton, T. Steiner, Semicond. Sci. Technol. 19, R59 (2004)CrossRefGoogle Scholar
  12. 12.
    W.Q. Zou, C.N. Ge, G. Venkataiah, H.L. Su, H.S. Hsu, J.C.A. Huang, X.C. Liu, F.M. Zhang, Y.W. Du, J. Appl. Phys. 111, 113704 (2012)CrossRefGoogle Scholar
  13. 13.
    M. Ungureanu, H. Schmidt, Q. Xu, H. Wenckstern, D. Spemann, H. Hochmuth, M. Lorenz, M. Grundmann, Superlattices Microstruct. 42, 231 (2006)CrossRefGoogle Scholar
  14. 14.
    M. Subramanian, P. Thakur, M. Tanemura, T. Hihara, V. Ganesan, T. Soga, K.H. Chae, R. Jayavel, T. Jimbo, J. Appl. Phys. 108, 053904 (2010)CrossRefGoogle Scholar
  15. 15.
    M.H.N. Assadi, Y.B. Zhang, P. Photongkam, S. Li, J. Appl. Phys. 109, 013909 (2011)CrossRefGoogle Scholar
  16. 16.
    G.R. Li, X.H. Lu, C.Y. Su, Y.X. Tong, J. Phys. Chem. C 112, 2927 (2008)CrossRefGoogle Scholar
  17. 17.
    S. Zhou, K. Potzger, A. Mücklich, F. Eichhorn, M. Helm, W. Skorupa, J. Fassbender, Nucl. Instrum. Methods Phys. Res. Sect. B 266, 5889 (2008)Google Scholar
  18. 18.
    Z. Wu, X.C. Liu, J.C.A. Huang, J. Magn. Magn. Mater. 324, 642 (2012)CrossRefGoogle Scholar
  19. 19.
    Y.S. Tan, Z.B. Fang, W. Chen, P.M. He, Chin. Phys. B 19, 097502 (2010)CrossRefGoogle Scholar
  20. 20.
    P.P. Murmu, J. Kennedy, B.J. Ruck, A. Markwitz, G.V.M. Williams, S. Rubanov, Nucl. Instrum. Methods Phys. Res. Sect. B 272, 100 (2012)CrossRefGoogle Scholar
  21. 21.
    A.S. Pereira, M. Peres, M.J. Soares, E. Alves, A. Neves, T. Monteiro, T. Trindade, Nanotechnology 17, 834 (2006)CrossRefGoogle Scholar
  22. 22.
    V. Vasyliev, E.G. Villora, M. Nakamura, Y. Sugahara, K. Shimamura, Opt. Express 20, 14460 (2012)CrossRefGoogle Scholar
  23. 23.
    A. Sharma, S. Dhar, B.P. Singh, T. Kundu, Solid State Commun. 151, 1885 (2011)CrossRefGoogle Scholar
  24. 24.
    S. Bayan, U. Das, D. Mohanta, Phys. Status Solidi A 207, 1859 (2010)CrossRefGoogle Scholar
  25. 25.
    S.M. Liu, F.Q. Liu, Z.G. Wang, Chem. Phys. Lett. 343, 489 (2001)CrossRefGoogle Scholar
  26. 26.
    B.H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, W. Cai, Adv. Funct. Mater. 20, 561 (2010)CrossRefGoogle Scholar
  27. 27.
    G. Xiong, U. Pal, J.G. Serrano, J. Appl. Phys. 101, 024317 (2007)CrossRefGoogle Scholar
  28. 28.
    B. Choudhury, A. Choudhury, J. Lumin. 136, 339 (2013)CrossRefGoogle Scholar
  29. 29.
    B. Choudhury, A. Choudhury, Curr. Appl. Phys. (2013). doi: 10.1016/j.cap.2013.02.007 Google Scholar
  30. 30.
    S.M. Liu, F.Q. Liu, H.Q. Guo, Z.H. Zhang, Z.G. Wang, Phys. Lett. A 271, 128 (2000)CrossRefGoogle Scholar
  31. 31.
    J.P. Liu, E. Fullerton, O. Gutfleisch, D.J. Sellmyer, Nanoscale Magnetic Materials and Applications, 1st edn. (Springer, Heidelberg, 2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Gurmeet Singh Lotey
    • 1
    Email author
  • Jaspal Singh
    • 1
  • N. K. Verma
    • 1
  1. 1.Nano Research Lab, School of Physics and Materials ScienceThapar UniversityPatialaIndia

Personalised recommendations