Journal of Materials Science: Materials in Electronics

, Volume 24, Issue 9, pp 3371–3375 | Cite as

Impact of substrate nitridation on the photoluminescence and photovoltaic characteristics of GaN grown on p-Si (100) by molecular beam epitaxy

  • Thirumaleshwara N. Bhat
  • Mohana K. Rajpalke
  • Basanta Roul
  • Mahesh Kumar
  • S. B. Krupanidhi
Article

Abstract

This report focuses on the structural and optical properties of the GaN films grown on p-Si (100) substrates along with photovoltaic characteristics of GaN/p-Si heterojunctions fabricated with substrate nitridation and in absence of substrate nitridation. The high resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM), Raman and photoluminescence (PL) spectroscopic studies reveal that the significant enhancement in the structural as well as in the optical properties of GaN epifilms grown with silicon nitride buffer layer when compared with the sample grown without silicon nitride buffer layer. The low temperature PL shows a free excitonic (FX) emission peak at 3.51 eV at the temperature of 5 K with a very narrow line width of 35 meV. Temperature dependent PL spectra follow the Varshni equation well and peak energy blue shifts by ~63 meV from 300 to 5 K. Raman data confirms the strain free nature and reasonably good crystallinity of the films. The GaN/p-Si heterojunctions fabricated without substrate nitridation show a superior photovoltaic performance compared to the devices fabricated in presence of substrate nitridation. The discussions have been carried out on the junction properties. Such single junction devices exhibit a promising fill factor and conversion efficiency of 23.36 and 0.12 %, respectively, under concentrated AM1.5 illumination.

References

  1. 1.
    W.Y. Uena, Z.Y. Lia, S.M. Lanb, S.M. Liaoa, J Crystal Growth 280, 335 (2005)CrossRefGoogle Scholar
  2. 2.
    S.-H. Jang, S.-J. Lee, I.-S. Seo, H.-K. Ahn, O.-Y. Lee, J.-Y. Leem, C.-R. Lee, J Crystal Growth 241, 289 (2002)CrossRefGoogle Scholar
  3. 3.
    A. Yamamoto, T. Yamauchi, T. Tanikawa, M. Sasase, B.K. Ghosh, A. Hashimoto, Y. Ito, J Crystal Growth 261, 266 (2004)CrossRefGoogle Scholar
  4. 4.
    M.A. Reshchikov, H. Morkoç, J. Appl. Phys. 97, 061301 (2005)CrossRefGoogle Scholar
  5. 5.
    Y.B. Tang, Z.H. Chen, H.S. Song, C.S. Lee, H.T. Cong, H.M. Cheng, W.J. Zhang, I. Bello, S.T. Lee, Nano lett. 8, 4191 (2008)CrossRefGoogle Scholar
  6. 6.
    F. Li, S.H. Lee, J.H. You, T.W. Kim, K.H. Lee, J.Y. Lee, Y.H. Kwon, T.W. Kang, J. Crystal Growth 312, 2320 (2010)Google Scholar
  7. 7.
    B. Yang, A. Trampert, O. Brandt, B. Jenichen, K.H. Ploog, J. Appl. Phys. 83, 3800 (1998)CrossRefGoogle Scholar
  8. 8.
    J. Wan, R. Venugopal, M.R. Melloch, H.M. Liaw, W.J. Rummel, Appl. Phys. Lett. 79, 1459 (2001)CrossRefGoogle Scholar
  9. 9.
    H. Morkoz, Handbook of nitride semiconductors and devices, vol. 2 (Wiley, New York, 2008)CrossRefGoogle Scholar
  10. 10.
    Y.S. Park, T.W. Kang, R.A. Taylor, Nanotechnology 19, 475402 (2008)Google Scholar
  11. 11.
    M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, P. Gibart, J. Appl. Phys. 86, 3721 (1999)CrossRefGoogle Scholar
  12. 12.
    K. Jeganathan, R.K. Debnath, R. Meijers, T. Stoica, R. Calarco, D. Grützmacher, H. Lüth, J. Appl. Phys. 105, 123707 (2009)Google Scholar
  13. 13.
    V.Y. Davydov, Y.E. Kitaev, I.N. Goncharuk, A.N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M.B. Smirnov, A.P. Mirgorodsky, R.A. Evarestov, Phys. Rev. B B58, 12899 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Thirumaleshwara N. Bhat
    • 1
  • Mohana K. Rajpalke
    • 1
  • Basanta Roul
    • 1
    • 2
  • Mahesh Kumar
    • 1
    • 3
  • S. B. Krupanidhi
    • 1
  1. 1.Materials Research CentreIndian Institute of ScienceBangaloreIndia
  2. 2.Central Research LaboratoryBharat ElectronicsBangaloreIndia
  3. 3.Centre of Excellence in Information and Communication TechnologyIndian Institute of TechnologyJodhpurIndia

Personalised recommendations