Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 24, Issue 9, pp 3309–3314 | Cite as

Enhancing energy storage density of (Ba, Sr)TiO3 ceramic particles by coating with Al2O3 and SiO2

  • Jinwen Wang
  • Chao Xu
  • Bo Shen
  • Jiwei ZhaiEmail author
Article

Abstract

The dielectric and energy storage properties of Ba0.4Sr0.6TiO3 particles coated by Al2O3 and SiO2 oxide were investigated. Results showed that the dielectric properties and energy storage density were improved apparently. The improvement of the energy storage density can be ascribed to two factors: one was that the breakdown strength was notably improved by the decrease of the porosity and defects; the other was the reduction of the grain size. Furthermore, the optimized composition showed the maximum energy storage density of 5.09 J/cm3, whereas the energy storage density of uncoated Ba0.4Sr0.6TiO3 was only 0.24 J/cm3.

Keywords

Dielectric Constant Dielectric Property BaTiO3 Coated Sample Breakdown Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to acknowledge the support from National Key Fundamental Research Program (973) (2009CB623302).

References

  1. 1.
    U. Syamaprasad, R.K. Galgali, B.C. Mohanty, Mater. Lett. 7, 197–200 (1988)CrossRefGoogle Scholar
  2. 2.
    S.M. Rhim, S. Hong, H. Bak, O.K. Kim, J. Am. Ceram. Soc. 83, 1145–1148 (2000)CrossRefGoogle Scholar
  3. 3.
    J.-Y. Ha, J.-W. Choi, C.-Y. Kang, J.-S. Kim, S.-J. Yoon, D.J. Choi, H.-J. Kim, J. Eur. Ceram. Soc. 27, 2747–2751 (2007)CrossRefGoogle Scholar
  4. 4.
    K. Zhou, S.A. Boggs, R. Ramprasad, M. Aindow, C. Erkey, S.P. Alpay, Appl. Phys. Lett. 93, 102908 (2008)CrossRefGoogle Scholar
  5. 5.
    H. Jiang, J. Zhai, J. Zhang, X. Yao, J. Am. Ceram. Soc. 92, 2319–2322 (2009)CrossRefGoogle Scholar
  6. 6.
    S. Chao, F. Dogan, Mater. Lett. 65, 978–981 (2011)CrossRefGoogle Scholar
  7. 7.
    N. Fletcher, A. Hilton, B. Ricketts, J. Phys. D Appl. Phys. 29, 253 (1996)CrossRefGoogle Scholar
  8. 8.
    Z.-Y. Shen, W.-Q. Luo, Y.-M. Li, Q.-G. Hu, Z.-M. Wang, X.-Y. Gu, J. Mater. Sci.: Mater. Electron. 24, 607–612 (2013)CrossRefGoogle Scholar
  9. 9.
    Z.-Y. Shen, Y.-M. Li, W.-Q. Luo, Z.-M. Wang, X.-Y. Gu, R.-H. Liao, J. Mater. Sci.: Mater. Electron. 24, 704–710 (2013)CrossRefGoogle Scholar
  10. 10.
    A. Kukreti, A. Kumar, U. Naithani, Indian J. Pure Appl. Phys. 49, 126–131 (2011)Google Scholar
  11. 11.
    I. Burn, D.M. Smyth, J. Mater. Sci. 7, 339–343 (1972)CrossRefGoogle Scholar
  12. 12.
    G. Dong, S. Ma, J. Du, J. Cui, Ceram. Int. 35, 2069–2075 (2009)CrossRefGoogle Scholar
  13. 13.
    Q. Zhang, L. Wang, J. Luo, Q. Tang, J. Du, Int. J. Appl. Ceram. Technol. 7, E124–E128 (2010)CrossRefGoogle Scholar
  14. 14.
    Q. Zhang, L. Wang, J. Luo, Q. Tang, J. Du, J. Am. Ceram. Soc. 92, 1871–1873 (2009)CrossRefGoogle Scholar
  15. 15.
    S. Mornet, C. Elissalde, V. Hornebecq, O. Bidault, E. Duguet, A. Brisson, M. Maglione, Chem. Mater. 17, 4530–4536 (2005)CrossRefGoogle Scholar
  16. 16.
    T. Wang, F. Gao, G. Hu, C. Tian, J. Alloy. Compd. 504, 362–366 (2010)CrossRefGoogle Scholar
  17. 17.
    J.Q. Qi, H.Y. Tian, Y. Wang, G.K.H. Pang, L.T. Li, H.L.W. Chan, J. Phys. Chem. B 109, 14006–14010 (2005)CrossRefGoogle Scholar
  18. 18.
    R. Chen, A. Cui, X. Wang, L. Li, Mater. Sci. Eng., B 99, 302–305 (2003)CrossRefGoogle Scholar
  19. 19.
    J. Qi, Y. Wang, W. Chen, L. Li, H. Chan, J. Solid State Chem. 178, 279–284 (2005)CrossRefGoogle Scholar
  20. 20.
    C. Xu, B. Shen, J. Zhai, Key Eng. Mater. 512–515, 1635–1640 (2012)CrossRefGoogle Scholar
  21. 21.
    B.R. Priya Rani, M.T. Sebastian, J. Mater. Sci.: Mater. Electron. 19, 39–44 (2008)CrossRefGoogle Scholar
  22. 22.
    J.F. Fernández, A.C. Caballero, P. Durán, C. Moure, J. Mater. Sci. 31, 975–981 (1996)CrossRefGoogle Scholar
  23. 23.
    T.I. Shakhtakhtinsky, IEEE Trans. Dielectr. Electr. Insul. 4, 813–815 (1997)CrossRefGoogle Scholar
  24. 24.
    N. Wada, T. Hiramatsu, T. Tamura, Y. Sakabe, Ceram. Int. 34, 933–937 (2008)CrossRefGoogle Scholar
  25. 25.
    Z. Zhao, V. Buscaglia, M. Viviani, M.T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, P. Nanni, Physical Review B. 70, 024107 (2004)CrossRefGoogle Scholar
  26. 26.
    M.W. Cole, P.C. Joshi, M.H. Ervin, M.C. Wood, R.L. Pfeffer, Thin Solid Films 374, 34–41 (2000)CrossRefGoogle Scholar
  27. 27.
    B.L. Cheng, B. Su, J.E. Holmes, T.W. Button, M. Gabbay, G. Fantozzi, J. Electroceram. 9, 17–23 (2002)CrossRefGoogle Scholar
  28. 28.
    J.G. Fisher, B.-K. Lee, A. Brancquart, S.-Y. Choi, S.-J.L. Kang, J. Eur. Ceram. Soc. 25, 2033–2036 (2005)CrossRefGoogle Scholar
  29. 29.
    B. Chu, Z. Xin, B. Neese, Q.M. Zhang, F. Bauer, IEEE Trans. Dielectr. Electr. Insul. 13, 1162–1169 (2006)Google Scholar
  30. 30.
    E.P. Gorzkowski, M.J. Pan, B.A. Bender, C. Wu, J. Am. Ceram. Soc. 91, 1065–1069 (2008)CrossRefGoogle Scholar
  31. 31.
    E.K. Beauchamp, J. Am. Ceram. Soc. 54, 484–487 (1971)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Functional Materials Research LaboratoryTongji UniversityShanghaiChina

Personalised recommendations