Thermal stability and electrical characteristics of poly(2-ethyleaniline)-Au nanocomposite

  • Sujata Vohra
  • Narinder Singh
  • Susheel K. Mittal
  • M. L. SinglaEmail author


The Present work reports the synthesis of poly2-ethyleaniline (PEANI) by oxidative polymerization of 2-ethyleaniline and its composite with gold nanoparticles (AuNPs) via in situ chemical synthesis route (simultaneous polymerization and precipitation). PEANI and its nanocomposite were characterized by thermogravimetric analysis-differential Scanning Calorimetry, X-ray diffraction and Fourier transform-infrared. The structural confirmation of the polymer was confirmed by FT-IR which shows strong absorption starting at ~1,600 cm−1 and extended to near-IR, Attributed to the presence of free carrier in the polymer. XRD of Polymer shows large X-rays peaks indicating that the material is rather amorphous with a certain degree of crystallinity where as XRD of PEANI-Au nanocomposite confirms the incorporation of AuNPs in composite. The TEM image showed the formation of PEANI-AuNPs core shell nanostructure. From TGA–DSC studies it was confirmed that the decomposition of the polymer in the composite is lowered by 254 °C as compare to PEANI alone, resulting in weak structure. Whereas I–V characteristics’ shows that the composite has about 10 % lower conductance values than the polymer alone.


Polyaniline Hydrazine Hydrate PTSA Initial Weight Loss Chloroauric Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are highly thankful to Dr. Pawan Kapur, Director, Central Scientific Instruments Organization (CSIO), Chandigarh for permitted us to carry out research work.


  1. 1.
    X.G. Li, M.R. Huang, W. Duan, Y.L. Yang, Chem. Rev. 102, 2925 (2002)CrossRefGoogle Scholar
  2. 2.
    C. Jeyaprabha, S. Sathiyanarayanan, G. Venkatachari, J. Appl. Polym. Sci. 101, 2144 (2006)CrossRefGoogle Scholar
  3. 3.
    R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. D. Santos, J. L. Bre das, M. LoÈ gdlund, W. R. Salaneck, Nature 121, 397 (1999)Google Scholar
  4. 4.
    M.D. Levi, Y. Gofer, D. Aurbach, Polym. Adv. Technol. 13, 697 (2002)CrossRefGoogle Scholar
  5. 5.
    S.K. Dhawan, N. Singh, D. Rodrigues, Sci. Technol. Adv. Mater. 4, 105 (2003)CrossRefGoogle Scholar
  6. 6.
    J.A. Conklin, S.C. Huang, S.M. Huang, T.W. Wen, R.B. Kaner, Macromolecules 28, 6522 (1995)CrossRefGoogle Scholar
  7. 7.
    P. Enzel, T. Bein, Am. Ins. Phy. Conf. Proc. 262, 93 (1992)CrossRefGoogle Scholar
  8. 8.
    M.R. Nabid, A.A. Entezami, Iran. Polym. J. 12, 401 (2003)Google Scholar
  9. 9.
    D. Anakli, S. Cetinkaya, Curr. Appl. Phys. 10, 401 (2010)CrossRefGoogle Scholar
  10. 10.
    Y. Sun, Y. Xia, Science 298, 2176 (2002)CrossRefGoogle Scholar
  11. 11.
    A. Moores, F. Goettmann, New J. Chem. 30, 1121 (2006)CrossRefGoogle Scholar
  12. 12.
    X. Luo, A. Morrin, A.J. Killard, M.R. Smyth, Electroanalysis 18, 319 (2006)CrossRefGoogle Scholar
  13. 13.
    P.V. Kamat, J. Phys. Chem. B 106, 7729 (2002)CrossRefGoogle Scholar
  14. 14.
    J. P Novak, L. C. Brousseau, F. W. Vance, R. C. Johnson, B. I. Lemon, J. T. Hupp, D. L. Feldheim, J. Am. Chem. Soc. 122, 12029 (2000)Google Scholar
  15. 15.
    J.M. Wessels, H.G. Nothofer, W.E. Ford, F.V. Wrochem, F. Scholz, T. Vossmeyer, A. Schroedter, H. Weller, A. Yasuda, J. Am. Chem. Soc. 126, 3349 (2004)CrossRefGoogle Scholar
  16. 16.
    M. Brust, D. Bethell, C.J. Kiely, D.J. Schiffrin, Langmuir 14, 5425 (1998)CrossRefGoogle Scholar
  17. 17.
    P.K. Jain, K.S. Lee, I.H. El-Sayed, M.A. El-Sayed, J. Phys. Chem. B 110, 7238 (2006)CrossRefGoogle Scholar
  18. 18.
    D.T. Thompson, Nano Today 2, 40 (2007)CrossRefGoogle Scholar
  19. 19.
    R. Gangopadhyay, A. De, Chem. Mater. 12, 608 (2000)CrossRefGoogle Scholar
  20. 20.
    S. Vohra, M. Kumar, S.K. Mittal, M.L. Singla, J. Mater. Sci.: Mater. Electron. (2012). doi: 10.1007/s10854-012-0933-0 Google Scholar
  21. 21.
    A. Drury, S. Chaure, M. Kroll, V. Nicolosi, N. Chaure, W.J. Blau, Chem. Mater. 19, 4252 (2007)CrossRefGoogle Scholar
  22. 22.
    N.V. Natalia, J. Stejskal, M. Trchova, J. Prokes, M. Omastová, Eur. Polym. J. 43, 233 (2007)Google Scholar
  23. 23.
    H. Yin, J. Yang, Macromol. Mater. Eng. 297, 203 (2012)CrossRefGoogle Scholar
  24. 24.
    D.S. Lin, S.M. Yang, J. App. Polym. Sci. 98, 1198 (2005)CrossRefGoogle Scholar
  25. 25.
    A.L. Schemid, S.I. Córdoba de Torresi, A.N. Bassetto, I.A. Carlos, J. Braz. Chem. Soc. 11, 317 (2000)CrossRefGoogle Scholar
  26. 26.
    M.L. Singla, S. Awasthi, A. Srivastava, D.V.S. Jain, Sens. Actuators A 136, 604 (2007)CrossRefGoogle Scholar
  27. 27.
    K. Mazid, S. Awasthi, M.L. Singla, Sens. Actuators A 135, 113 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Sujata Vohra
    • 1
    • 2
  • Narinder Singh
    • 1
    • 3
  • Susheel K. Mittal
    • 2
  • M. L. Singla
    • 1
    Email author
  1. 1.Material Research Division (Agrionics)CSIR-Central Scientific Instruments OrganisationChandigarhIndia
  2. 2.Thapar Institute of Engineering and TechnologyPatialaIndia
  3. 3.Centre for Nanoscience and Nanotechnology, U.I.E.A.S.TPanjab UniversityChandigarhIndia

Personalised recommendations